메뉴 건너뛰기




Volumn 47, Issue 18, 2008, Pages 7072-7080

Optimization of an artificial neural network by selecting the training function. Application to olive oil mills waste

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION ALGORITHMS; BOOLEAN FUNCTIONS; CONJUGATE GRADIENT METHOD; CORRELATION METHODS; DEWATERING; FLUIDIZATION; FORECASTING; IMAGE CLASSIFICATION; MOISTURE; NETWORK PROTOCOLS; NEURAL NETWORKS; SENSOR NETWORKS; STATISTICAL TESTS; VEGETABLE OILS;

EID: 53349109587     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie8001205     Document Type: Article
Times cited : (41)

References (33)
  • 1
    • 0022664556 scopus 로고
    • Model for continuous drying of solids in fluidized/spouted beds
    • Viswanathan, K. Model for continuous drying of solids in fluidized/spouted beds. Can. J. Chem. Eng. 1986, 64, 87-95.
    • (1986) Can. J. Chem. Eng , vol.64 , pp. 87-95
    • Viswanathan, K.1
  • 2
    • 38249043617 scopus 로고
    • Modeling and simulation of a continuous fluidized-bed dryer
    • Lai, F.; Yiming, C.; Fan, L. Modeling and simulation of a continuous fluidized-bed dryer. Chem. Eng. Sci. 1986, 41, 2419-2430.
    • (1986) Chem. Eng. Sci , vol.41 , pp. 2419-2430
    • Lai, F.1    Yiming, C.2    Fan, L.3
  • 3
    • 0003348441 scopus 로고
    • Modeling of Two Component Fluid Bed Dryers: An Approach to the Evaluation of the Drying Time
    • Mujumdar, A. S, Ed, Elsevier Science Publishing: Amsterdam
    • Donsì, G.; Ferrari, G. Modeling of Two Component Fluid Bed Dryers: An Approach to the Evaluation of the Drying Time. In Drying '92; Mujumdar, A. S., Ed.; Elsevier Science Publishing: Amsterdam, 1992; pp 493-502.
    • (1992) Drying '92 , pp. 493-502
    • Donsì, G.1    Ferrari, G.2
  • 4
    • 45949130281 scopus 로고
    • Drying granular solids in a fluidized bed I: Description on basis of mass and heat transfer coefficients
    • Hoebink, J; Rietema, K. Drying granular solids in a fluidized bed I: Description on basis of mass and heat transfer coefficients. Chem. Eng. Sci. 1980, 35, 2135-2139.
    • (1980) Chem. Eng. Sci , vol.35 , pp. 2135-2139
    • Hoebink, J.1    Rietema, K.2
  • 5
    • 0027592421 scopus 로고
    • Dynamic model of a fluidized bed dryer
    • Panda, R.; Rao, S. Dynamic model of a fluidized bed dryer. Drying Technol. 1993, 11, 589-602.
    • (1993) Drying Technol , vol.11 , pp. 589-602
    • Panda, R.1    Rao, S.2
  • 6
    • 0020635585 scopus 로고
    • A mathematical model for continuous fluidized bed drying
    • Palánz, B. A mathematical model for continuous fluidized bed drying. Chem. Eng. Sci. 1983, 38, 1045-1059.
    • (1983) Chem. Eng. Sci , vol.38 , pp. 1045-1059
    • Palánz, B.1
  • 7
    • 0002558367 scopus 로고
    • Modeling and simulation of batch and continuous fluidized bed dryers
    • Zahed, A.; Zhu, J.; Grace, J. Modeling and simulation of batch and continuous fluidized bed dryers. Drying Technol. 1995, 13, 1-28.
    • (1995) Drying Technol , vol.13 , pp. 1-28
    • Zahed, A.1    Zhu, J.2    Grace, J.3
  • 8
    • 0027593923 scopus 로고
    • Use of neural network to predict industrial dryer performance
    • Huang, B.; Mujumdar, A. Use of neural network to predict industrial dryer performance. Drying Technol. 1993, 11, 525-541.
    • (1993) Drying Technol , vol.11 , pp. 525-541
    • Huang, B.1    Mujumdar, A.2
  • 9
    • 0003926467 scopus 로고
    • Modelisation de la cinétique de séchage et de la dégradation de la qualité amidonnière du maïs par réseaux de neurones
    • Trelea, I.; Courtois, F.; Trystam, G. Modelisation de la cinétique de séchage et de la dégradation de la qualité amidonnière du maïs par réseaux de neurones. Récents Prog. Génie Procedés 1995, 9, 135-140.
    • (1995) Récents Prog. Génie Procedés , vol.9 , pp. 135-140
    • Trelea, I.1    Courtois, F.2    Trystam, G.3
  • 10
    • 0000369557 scopus 로고
    • The artificial neural networks and the drying process modelling
    • Jinescu, G.; Lavric, V. The artificial neural networks and the drying process modelling. Drying Technol. 1995, 13, 1579-1586.
    • (1995) Drying Technol , vol.13 , pp. 1579-1586
    • Jinescu, G.1    Lavric, V.2
  • 11
    • 0343237794 scopus 로고    scopus 로고
    • A neural network topology for modeling grain drying
    • Farkas, I.; Reményi, P.; Biro, A. A neural network topology for modeling grain drying. Comput. Electron. Agric. 2000, 26, 147-158.
    • (2000) Comput. Electron. Agric , vol.26 , pp. 147-158
    • Farkas, I.1    Reményi, P.2    Biro, A.3
  • 12
    • 0034306907 scopus 로고    scopus 로고
    • Modeling aspect of grain drying with a neural network
    • Farkas, I.; Reményi, P.; Biro, A. Modeling aspect of grain drying with a neural network. Comput. Electron. Agric. 2000, 29, 99-113.
    • (2000) Comput. Electron. Agric , vol.29 , pp. 99-113
    • Farkas, I.1    Reményi, P.2    Biro, A.3
  • 14
    • 0036569061 scopus 로고    scopus 로고
    • Designing and optimizing a neural network for the modeling of a fluidized-bed drying process
    • Castellanos, J. A.; Palancar, M. C.; Aragón, J. M. Designing and optimizing a neural network for the modeling of a fluidized-bed drying process. Ind. Eng. Chem. Res. 2002, 41, 2262-2269.
    • (2002) Ind. Eng. Chem. Res , vol.41 , pp. 2262-2269
    • Castellanos, J.A.1    Palancar, M.C.2    Aragón, J.M.3
  • 15
    • 27444431884 scopus 로고    scopus 로고
    • Modeling the drying of a high-moisture solid with an artificial neural network
    • Torrecilla, J. S.; Aragon, J. M.; Palancar, M. C. Modeling the drying of a high-moisture solid with an artificial neural network. Ind. Eng. Chem. Res. 2005, 44, 8057-8066.
    • (2005) Ind. Eng. Chem. Res , vol.44 , pp. 8057-8066
    • Torrecilla, J.S.1    Aragon, J.M.2    Palancar, M.C.3
  • 16
    • 11144273669 scopus 로고
    • The Perceptron: A probabilistic model for information storage and organization ion the brain
    • Rosenblatt, F. The Perceptron: A probabilistic model for information storage and organization ion the brain. Psychol. Rev. 1958, 65, 386-408.
    • (1958) Psychol. Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 17
    • 34848883887 scopus 로고    scopus 로고
    • Quantification of Phenolic Compounds in Olive Oil Mill Wastewater by Artificial Neural Network/Laccase Biosensor
    • Torrecilla, J. S.; Mena, M. L.; Yáñez-Sedẽno, P.; García, J. Quantification of Phenolic Compounds in Olive Oil Mill Wastewater by Artificial Neural Network/Laccase Biosensor. J. Agric. Food Chem. 2007, 55, 7418-7426.
    • (2007) J. Agric. Food Chem , vol.55 , pp. 7418-7426
    • Torrecilla, J.S.1    Mena, M.L.2    Yáñez-Sedẽno, P.3    García, J.4
  • 19
    • 0002644826 scopus 로고
    • Nuevas tecnologías para la obtención del aceite de oliva.
    • Alba, J. Nuevas tecnologías para la obtención del aceite de oliva. Fruticultura Prof. 1994, 62, 85-95.
    • (1994) Fruticultura Prof , vol.62 , pp. 85-95
    • Alba, J.1
  • 20
    • 27444447171 scopus 로고    scopus 로고
    • Secado de orujo de aceituna procedente del decanter de dos fases.
    • Suria, E. Secado de orujo de aceituna procedente del decanter de dos fases. Aliment., Equipos Tecnol. 1996, 10, 12-24.
    • (1996) Aliment., Equipos Tecnol , vol.10 , pp. 12-24
    • Suria, E.1
  • 21
    • 0004976835 scopus 로고
    • Evolución de la tecnología del aceite de oliva, nuevos sistemas ecológicos; ensayos y conclusiones.
    • Uceda, M.; Hermoso, M.; González, J. Evolución de la tecnología del aceite de oliva, nuevos sistemas ecológicos; ensayos y conclusiones. Aliment., Equipos Tecnol. 1995, 5, 93-98.
    • (1995) Aliment., Equipos Tecnol , vol.5 , pp. 93-98
    • Uceda, M.1    Hermoso, M.2    González, J.3
  • 24
    • 0032983160 scopus 로고    scopus 로고
    • On the momentum term in gradient descent learning algorithms
    • Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145-151.
    • (1999) Neural Netw , vol.12 , pp. 145-151
    • Qian, N.1
  • 25
    • 34250004172 scopus 로고    scopus 로고
    • University of California, Riverside: Riverside, CA, available at
    • Vacic, V. Summary of the training functions in Matlab's NN toolbox; University of California, Riverside: Riverside, CA, 2005; available at http://www.cs.ucr.edu/~vladimir/cs171/nn_summary.pdf.
    • (2005) Summary of the training functions in Matlab's NN toolbox
    • Vacic, V.1
  • 26
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E.; Hinten, G.; Willians, R. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinten, G.2    Willians, R.3
  • 28
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradient
    • Fletcher, R.; Reeves, C. M. Function minimization by conjugate gradient. Comput. J. 1964, 7, 149-154.
    • (1964) Comput. J , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 29
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M. F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1983, 6, 525-533.
    • (1983) Neural Netw , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 32
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M. T.; Menhaj, M. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netwoks 1994, 5, 989-993.
    • (1994) IEEE Trans. Neural Netwoks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 33
    • 0001025418 scopus 로고
    • Bayessian interpolation
    • Markay, D. J. C. Bayessian interpolation. Neural Comput. 1992, 4, 415-447.
    • (1992) Neural Comput , vol.4 , pp. 415-447
    • Markay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.