-
2
-
-
84865472304
-
Two new classes of bent functions
-
Advance in Cryptology-Eurocrypt'93, Springer, Berlin
-
Carlet C. Two new classes of bent functions. Advance in Cryptology-Eurocrypt'93. Lecture Notes in Computer Science vol. 765 (1994), Springer, Berlin 77-101
-
(1994)
Lecture Notes in Computer Science
, vol.765
, pp. 77-101
-
-
Carlet, C.1
-
4
-
-
0036160819
-
Spectral domain analysis of correlation immune and resilient Boolean functions
-
Carlet C., and Sarkar P. Spectral domain analysis of correlation immune and resilient Boolean functions. Finite Fields and Applications l8 (2002) 120-130
-
(2002)
Finite Fields and Applications
, vol.l8
, pp. 120-130
-
-
Carlet, C.1
Sarkar, P.2
-
5
-
-
84884039585
-
Homogeneous bent functions, invariants, and designs
-
Charnes C., Rotteler M., and Beth T. Homogeneous bent functions, invariants, and designs. Designs, Codes and Cryptography 26 (2002) 139-154
-
(2002)
Designs, Codes and Cryptography
, vol.26
, pp. 139-154
-
-
Charnes, C.1
Rotteler, M.2
Beth, T.3
-
6
-
-
53049093683
-
-
C. Charnes, U. Dempwolff, J. Pieprzyk, The eight variables homogeneous degree 3 bent functions, Journal of Discrete Algorithms (in press)
-
C. Charnes, U. Dempwolff, J. Pieprzyk, The eight variables homogeneous degree 3 bent functions, Journal of Discrete Algorithms (in press)
-
-
-
-
7
-
-
53049100712
-
-
J.F. Dillon, Elementary Hadamard Difference Sets, Ph.D. Dissertation, University Maryland, 1974
-
J.F. Dillon, Elementary Hadamard Difference Sets, Ph.D. Dissertation, University Maryland, 1974
-
-
-
-
10
-
-
0042527998
-
Cubic bent functions
-
Hou X. Cubic bent functions. Discrete Mathematics 189 (1998) 149-161
-
(1998)
Discrete Mathematics
, vol.189
, pp. 149-161
-
-
Hou, X.1
-
13
-
-
12144263316
-
Designing bent functions using evolving computing
-
Meng Q., Zhang H., Wang Z., et al. Designing bent functions using evolving computing. Acta Electronica Sinica 32 11 (2004) 1901-1903
-
(2004)
Acta Electronica Sinica
, vol.32
, Issue.11
, pp. 1901-1903
-
-
Meng, Q.1
Zhang, H.2
Wang, Z.3
-
14
-
-
20444425866
-
A simple proof for the nonexistence of homogenous bent function of degree m in 2 m variables with m > 3
-
Meng Q., Zhang H., Qin Z., et al. A simple proof for the nonexistence of homogenous bent function of degree m in 2 m variables with m > 3. Journal of Wuhan University 10 3 (2005) 504-506
-
(2005)
Journal of Wuhan University
, vol.10
, Issue.3
, pp. 504-506
-
-
Meng, Q.1
Zhang, H.2
Qin, Z.3
-
15
-
-
33846794543
-
On the degree of homogenous bent functions
-
Meng Q., Zhang H., Yang M., et al. On the degree of homogenous bent functions. Discrete Applied Mathematics 155 5 (2007) 665-669
-
(2007)
Discrete Applied Mathematics
, vol.155
, Issue.5
, pp. 665-669
-
-
Meng, Q.1
Zhang, H.2
Yang, M.3
-
16
-
-
53049108425
-
-
Q. Meng, H. Zhang, J. Cui, et al., Almost enumeration of 8-variable bent functions. http://eprint.iacr.org.2005/100
-
Q. Meng, H. Zhang, J. Cui, et al., Almost enumeration of 8-variable bent functions. http://eprint.iacr.org.2005/100
-
-
-
-
19
-
-
33746898045
-
Sequences for OFDM and Multi-code CDMA: Two problems in algebraic coding theory
-
Proceedings of Sequence and Their Applications-SETA01. Helleseth T., Kumar P.V., and Yang K. (Eds), Springer, Berlin
-
Paterson K.G. Sequences for OFDM and Multi-code CDMA: Two problems in algebraic coding theory. In: Helleseth T., Kumar P.V., and Yang K. (Eds). Proceedings of Sequence and Their Applications-SETA01. Discrete Mathematics and Theoretical Computer Science Series (2002), Springer, Berlin 46-71
-
(2002)
Discrete Mathematics and Theoretical Computer Science Series
, pp. 46-71
-
-
Paterson, K.G.1
-
20
-
-
84955621100
-
Propagation characteristics of Boolean functions
-
Advances in Cryptology-Eurocrypt'90, Springer, Berlin
-
Preneel B., Leekwijck W.V., Linden L.V., et al. Propagation characteristics of Boolean functions. Advances in Cryptology-Eurocrypt'90. Lecture Notes in Computer Science vol. 473 (1991), Springer, Berlin 161-173
-
(1991)
Lecture Notes in Computer Science
, vol.473
, pp. 161-173
-
-
Preneel, B.1
Leekwijck, W.V.2
Linden, L.V.3
-
22
-
-
3142537092
-
Homogeneous bent functions of degree n in 2 n variables do not exist for n > 3
-
Xia T., Seberry J., Pieprzyk J., et al. Homogeneous bent functions of degree n in 2 n variables do not exist for n > 3. Discrete Applied Mathematics 142 (2004) 127-132
-
(2004)
Discrete Applied Mathematics
, vol.142
, pp. 127-132
-
-
Xia, T.1
Seberry, J.2
Pieprzyk, J.3
-
23
-
-
84958758146
-
Relationships between bent functions and complementary plateaued functions
-
Proceedings of the 2nd International Conference in Information Security and Cryptology, Springer, Berlin
-
Zheng Y., and Zhang X. Relationships between bent functions and complementary plateaued functions. Proceedings of the 2nd International Conference in Information Security and Cryptology. Lecture Notes in Computer Science vol. 1787 (1999), Springer, Berlin 60-75
-
(1999)
Lecture Notes in Computer Science
, vol.1787
, pp. 60-75
-
-
Zheng, Y.1
Zhang, X.2
|