-
1
-
-
0345491987
-
Bootstrap percolation: Visualizations and applications
-
ADLER, J. and LEV, U. (2003). Bootstrap percolation: Visualizations and applications. Brazillian J. Phys. 33 641-644.
-
(2003)
Brazillian J. Phys
, vol.33
, pp. 641-644
-
-
ADLER, J.1
LEV, U.2
-
2
-
-
0009440913
-
Comparison of bootstrap percolation models
-
ADLER, J., STAUFFER, D. and AHARONY, A. (1989). Comparison of bootstrap percolation models. J. Phys. A 22 L297-L301.
-
(1989)
J. Phys. A
, vol.22
-
-
ADLER, J.1
STAUFFER, D.2
AHARONY, A.3
-
3
-
-
36149031851
-
Metastability effects in bootstrap percolation
-
MR0968311
-
AIZENMAN, M. and LEBOWITZ, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801-3813. MR0968311
-
(1988)
J. Phys. A
, vol.21
, pp. 3801-3813
-
-
AIZENMAN, M.1
LEBOWITZ, J.L.2
-
4
-
-
33846811254
-
Integrals, partitions and MacMahon's theorem
-
MR2310749
-
ANDREWS, G., ERIKSSON, H., PETROV, F. and ROMIK, D. (2007). Integrals, partitions and MacMahon's theorem. J. Combin. Theory A 114 545-554. MR2310749
-
(2007)
J. Combin. Theory A
, vol.114
, pp. 545-554
-
-
ANDREWS, G.1
ERIKSSON, H.2
PETROV, F.3
ROMIK, D.4
-
5
-
-
16344365091
-
Partitions with short sequences and mock theta functions
-
electronic, MR2139704
-
ANDREWS, G. E. (2005). Partitions with short sequences and mock theta functions. Proc. Natl. Acad. Sci. USA 102 4666-4671 (electronic). MR2139704
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 4666-4671
-
-
ANDREWS, G.E.1
-
6
-
-
0042093702
-
Sharp thresholds in bootstrap percolation
-
BALOGH, J. and BOLLOBÁS, B. (2003). Sharp thresholds in bootstrap percolation. Phys. A 326 305-312.
-
(2003)
Phys. A
, vol.326
, pp. 305-312
-
-
BALOGH, J.1
BOLLOBÁS, B.2
-
7
-
-
0035539876
-
Phase transition and finite-size scaling for the integer partitioning problem
-
MR1871556
-
BORGS, C., CHAYES, J. and PITTEL, B. (2001). Phase transition and finite-size scaling for the integer partitioning problem. Random Structures Algorithms 19 247-288. MR1871556
-
(2001)
Random Structures Algorithms
, vol.19
, pp. 247-288
-
-
BORGS, C.1
CHAYES, J.2
PITTEL, B.3
-
8
-
-
36749042025
-
Kinetically constrained spin models
-
To appear
-
CANCRINI, N., MARTINELLI, F., ROBERTO, C. and TONINELLI, C. (2008). Kinetically constrained spin models. Probab. Theory Related Fields. To appear.
-
(2008)
Probab. Theory Related Fields
-
-
CANCRINI, N.1
MARTINELLI, F.2
ROBERTO, C.3
TONINELLI, C.4
-
9
-
-
17644403512
-
Exact solution of a jamming transition: Closed equations for a bootstrap percolation problem
-
electronic, MR2142892
-
DE GREGORIO, P., LAWLOR, A., BRADLEY, P. and DAWSON, K. A. (2005). Exact solution of a jamming transition: Closed equations for a bootstrap percolation problem. Proc. Natl. Acad. Sci. USA 102 5669-5673 (electronic). MR2142892
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 5669-5673
-
-
DE GREGORIO, P.1
LAWLOR, A.2
BRADLEY, P.3
DAWSON, K.A.4
-
10
-
-
33645962536
-
New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model
-
DE GREGORIO, P., LAWLOR, A. and DAWSON, K. A. (2006). New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model. Europhys. Lett. 74 287-293.
-
(2006)
Europhys. Lett
, vol.74
, pp. 287-293
-
-
DE GREGORIO, P.1
LAWLOR, A.2
DAWSON, K.A.3
-
11
-
-
0036022801
-
Stretched exponential fixation in stochastic Ising models at zero temperature
-
MR1918786
-
FONTES, L. R., SCHONMANN, R. H. and SIDORAVICIUS, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495-518. MR1918786
-
(2002)
Comm. Math. Phys
, vol.228
, pp. 495-518
-
-
FONTES, L.R.1
SCHONMANN, R.H.2
SIDORAVICIUS, V.3
-
12
-
-
13744252028
-
Every monotone graph property has a sharp threshold
-
MR1371123
-
FRIEDGUT, E. and KALAI, G. (1996). Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 2993-3002. MR1371123
-
(1996)
Proc. Amer. Math. Soc
, vol.124
, pp. 2993-3002
-
-
FRIEDGUT, E.1
KALAI, G.2
-
13
-
-
0038772458
-
Finite-size effects in a cellular automaton for diffusion
-
MR1002492
-
FROBÖSE, K. (1989). Finite-size effects in a cellular automaton for diffusion. J. Statist. Phys. 55 1285-1292. MR1002492
-
(1989)
J. Statist. Phys
, vol.55
, pp. 1285-1292
-
-
FROBÖSE, K.1
-
14
-
-
52949124671
-
-
GRIMMETT, G. R. (1999). Percolation, 2nd ed. Springer, Berlin. MR1707339
-
GRIMMETT, G. R. (1999). Percolation, 2nd ed. Springer, Berlin. MR1707339
-
-
-
-
15
-
-
0038270639
-
Sharp metastability threshold for two-dimensional bootstrap percolation
-
MR1961342
-
HOLROYD, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195-224. MR1961342
-
(2003)
Probab. Theory Related Fields
, vol.125
, pp. 195-224
-
-
HOLROYD, A.E.1
-
16
-
-
33744907317
-
The metastability threshold for modified bootstrap percolation in d dimensions
-
electronic, MR2223042
-
HOLROYD, A. E. (2006). The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. 11 418-433 (electronic). MR2223042
-
(2006)
Electron. J. Probab
, vol.11
, pp. 418-433
-
-
HOLROYD, A.E.1
-
17
-
-
3142699404
-
Integrals, partitions, and cellular automata
-
MR2052953
-
HOLROYD, A. E., LIGGETT, T. M. and ROMIK, D. (2004). Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc. 356 3349-3368. MR2052953
-
(2004)
Trans. Amer. Math. Soc
, vol.356
, pp. 3349-3368
-
-
HOLROYD, A.E.1
LIGGETT, T.M.2
ROMIK, D.3
-
18
-
-
84990709764
-
Component behavior near the critical point of the random graph process
-
MR1099794
-
ŁUCZAK, T. (1990). Component behavior near the critical point of the random graph process. Random Structures Algorithms 1 287-310. MR1099794
-
(1990)
Random Structures Algorithms
, vol.1
, pp. 287-310
-
-
ŁUCZAK, T.1
-
20
-
-
0001462236
-
Proof of Straley's argument for bootstrap percolation
-
MR0914911
-
VAN ENTER, A. C. D. (1987). Proof of Straley's argument for bootstrap percolation. J. Statist. Phys. 48 943-945. MR0914911
-
(1987)
J. Statist. Phys
, vol.48
, pp. 943-945
-
-
VAN, E.A.C.D.1
|