메뉴 건너뛰기




Volumn 208, Issue 1-3, 2008, Pages 470-476

Artificial neural network approach to predict the electrical conductivity and density of Ag-Ni binary alloys

Author keywords

Artificial neural network; Density; Electrical conductivity; Silver nickel binary alloys

Indexed keywords

ALLOYS; BACKPROPAGATION; ELECTRIC CONDUCTIVITY; GRADIENT METHODS; IMAGE CLASSIFICATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; METALLIC COMPOUNDS; NEURAL NETWORKS; NICKEL; NICKEL ALLOYS; SILVER; SILVER ALLOYS;

EID: 52949147141     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2008.01.016     Document Type: Article
Times cited : (11)

References (19)
  • 1
    • 2942625542 scopus 로고    scopus 로고
    • Neural network approach to prediction of bending strength and hardening behavior of particulate reinforced (Al-Si-Mg)-aluminum matrix composites
    • Altinkok N., and Koker R. Neural network approach to prediction of bending strength and hardening behavior of particulate reinforced (Al-Si-Mg)-aluminum matrix composites. J. Mater. Des. 25 (2004) 595-602
    • (2004) J. Mater. Des. , vol.25 , pp. 595-602
    • Altinkok, N.1    Koker, R.2
  • 2
    • 84957030938 scopus 로고    scopus 로고
    • On mathematical modeling of networks and implementation aspects
    • LNAI 2385, Springer-Verlag, Berlin pp. 168-180
    • Bernhaut R., and Pfalzgraf J. On mathematical modeling of networks and implementation aspects. AISC-Calculemus 2002. LNAI 2385 (2002), Springer-Verlag, Berlin pp. 168-180
    • (2002) AISC-Calculemus 2002
    • Bernhaut, R.1    Pfalzgraf, J.2
  • 3
    • 0042020185 scopus 로고    scopus 로고
    • Microstructure, hardness and electrical properties of silver-based refractory contact materials
    • Findik F., and Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials. J. Mater. Des. 24 (2003) 489-492
    • (2003) J. Mater. Des. , vol.24 , pp. 489-492
    • Findik, F.1    Uzun, H.2
  • 7
    • 33748077110 scopus 로고    scopus 로고
    • Modeling the compressive strength of molasses-cement sand system using design of experiments and back propagation neural network
    • Mandal A., and Roy P. Modeling the compressive strength of molasses-cement sand system using design of experiments and back propagation neural network. J. Mater. Process. Technol. 180 (2006) 167-173
    • (2006) J. Mater. Process. Technol. , vol.180 , pp. 167-173
    • Mandal, A.1    Roy, P.2
  • 8
    • 33847276077 scopus 로고    scopus 로고
    • Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II
    • Mandal D., Pal S.K., and Saha P. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J. Mater. Process. Technol. 186 (2007) 154-162
    • (2007) J. Mater. Process. Technol. , vol.186 , pp. 154-162
    • Mandal, D.1    Pal, S.K.2    Saha, P.3
  • 9
    • 0037074913 scopus 로고    scopus 로고
    • Prediction of the mechanical properties of forged TC11 titanium alloy by ANN
    • Miaoquan L., Xuemei L., and Aiming X. Prediction of the mechanical properties of forged TC11 titanium alloy by ANN. J. Mater. Process. Technol. 121 (2002) 1-4
    • (2002) J. Mater. Process. Technol. , vol.121 , pp. 1-4
    • Miaoquan, L.1    Xuemei, L.2    Aiming, X.3
  • 10
    • 33750286467 scopus 로고    scopus 로고
    • Modular neural network modeling of compressive strength of high-alumina bricks by using tangent function
    • Oguz Guler M., and Artir R. Modular neural network modeling of compressive strength of high-alumina bricks by using tangent function. J. Mater. Des. 28 (2007) 112-118
    • (2007) J. Mater. Des. , vol.28 , pp. 112-118
    • Oguz Guler, M.1    Artir, R.2
  • 11
    • 0037427636 scopus 로고    scopus 로고
    • Prediction of the process parameters of metal powder preform forging using artificial neural network (ANN)
    • Ohdar R.K., and Pasha S. Prediction of the process parameters of metal powder preform forging using artificial neural network (ANN). J. Mater. Process. Technol. 132 (2003) 227-234
    • (2003) J. Mater. Process. Technol. , vol.132 , pp. 227-234
    • Ohdar, R.K.1    Pasha, S.2
  • 12
    • 33750350191 scopus 로고    scopus 로고
    • Artificial neural network application to the friction stir welding of aluminum plates
    • Okuyucu H., Kurt A., and Arcaklioglu E. Artificial neural network application to the friction stir welding of aluminum plates. J. Mater. Des. 28 (2007) 78-84
    • (2007) J. Mater. Des. , vol.28 , pp. 78-84
    • Okuyucu, H.1    Kurt, A.2    Arcaklioglu, E.3
  • 15
    • 29144446323 scopus 로고    scopus 로고
    • Artificial neural networks for modeling the mechanical properties of steels in various applications
    • Sterjovski Z., Nolan D., Carpenter K.R., Dunne D.P., and Norrish J. Artificial neural networks for modeling the mechanical properties of steels in various applications. J. Mater. Process. Technol. 170 (2005) 536-544
    • (2005) J. Mater. Process. Technol. , vol.170 , pp. 536-544
    • Sterjovski, Z.1    Nolan, D.2    Carpenter, K.R.3    Dunne, D.P.4    Norrish, J.5
  • 16
    • 0035205143 scopus 로고    scopus 로고
    • A novel artificial neural network force model for end milling
    • Tandom V., and El-Mounayri H. A novel artificial neural network force model for end milling. J. Adv. Manuf. Technol. 18 (2001) 693-700
    • (2001) J. Adv. Manuf. Technol. , vol.18 , pp. 693-700
    • Tandom, V.1    El-Mounayri, H.2
  • 17
    • 26444432341 scopus 로고    scopus 로고
    • Artificial neural network modelling for evaluating austenitic stainless steel and Zircaloy-2 welds
    • Vasudevan M., Rao B.P.C., Venkatraman B., Jayakumar T., and Raj B. Artificial neural network modelling for evaluating austenitic stainless steel and Zircaloy-2 welds. J. Mater. Process. Technol. 169 (2005) 396-400
    • (2005) J. Mater. Process. Technol. , vol.169 , pp. 396-400
    • Vasudevan, M.1    Rao, B.P.C.2    Venkatraman, B.3    Jayakumar, T.4    Raj, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.