-
2
-
-
0009900351
-
Anomaly Detection over Noisy Data using Learned Probability Distributions
-
Eskin, E.: Anomaly Detection over Noisy Data using Learned Probability Distributions. In: ICML, pp. 255-262 (2000)
-
(2000)
ICML
, pp. 255-262
-
-
Eskin, E.1
-
3
-
-
0012905555
-
Finding Intensional Knowledge of Distance-Based Outliers
-
Knorr, E.M., Ng, R.T.: Finding Intensional Knowledge of Distance-Based Outliers. In: VLDB, pp. 211-222 (1999)
-
(1999)
VLDB
, pp. 211-222
-
-
Knorr, E.M.1
Ng, R.T.2
-
4
-
-
0034133513
-
Distance-Based Outliers: Algorithms and Applications
-
Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-Based Outliers: Algorithms and Applications. VLDB J. 8(3-4), 237-253 (2000)
-
(2000)
VLDB J
, vol.8
, Issue.3-4
, pp. 237-253
-
-
Knorr, E.M.1
Ng, R.T.2
Tucakov, V.3
-
5
-
-
0003136237
-
Efficient and Effective Clustering Methods for Spatial Data Mining
-
Ng, R.T., Han, J.: Efficient and Effective Clustering Methods for Spatial Data Mining. In: VLDB, pp. 144-155 (1994)
-
(1994)
VLDB
, pp. 144-155
-
-
Ng, R.T.1
Han, J.2
-
6
-
-
78149330405
-
-
KDD, pp
-
Ester, M., Kriegel, H.P., Xu, X.: A Database Interface for Clustering in Large Spatial Databases. In: KDD, pp. 94-99 (1995)
-
(1995)
A Database Interface for Clustering in Large Spatial Databases
, pp. 94-99
-
-
Ester, M.1
Kriegel, H.P.2
Xu, X.3
-
7
-
-
0030157145
-
BIRCH: An Efficient Data Clustering Method for Very Large Databases
-
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. In: SIGMOD, pp. 103-114 (1996)
-
(1996)
SIGMOD
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
8
-
-
52949083457
-
-
Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. In: VLDB, pp. 428-439 (1998)
-
Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. In: VLDB, pp. 428-439 (1998)
-
-
-
-
9
-
-
0032090765
-
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications
-
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: SIGMOD, pp. 94-105 (1998)
-
(1998)
SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
10
-
-
0039253819
-
-
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying Density-Based Local Outliers. In: SIGMOD, pp. 93-104 (2000)
-
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying Density-Based Local Outliers. In: SIGMOD, pp. 93-104 (2000)
-
-
-
-
11
-
-
38149027073
-
-
Su, L., Han, W., Yang, S., Zou, P., Jia, Y.: Continuous Adaptive Outlier Detection on Distributed Data Streams. In: HPCC, pp. 74-85 (2007)
-
Su, L., Han, W., Yang, S., Zou, P., Jia, Y.: Continuous Adaptive Outlier Detection on Distributed Data Streams. In: HPCC, pp. 74-85 (2007)
-
-
-
-
12
-
-
0034592923
-
-
Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line Unsupervised Outlier Detection using Finite Mixtures with Discounting Learning Algorithms. In: KDD, pp. 320-324 (2000)
-
Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line Unsupervised Outlier Detection using Finite Mixtures with Discounting Learning Algorithms. In: KDD, pp. 320-324 (2000)
-
-
-
-
13
-
-
0035788911
-
-
Yamanishi, K., Takeuchi, J.: Discovering Outlier Filtering Rules from Unlabeled Data: Combining a Supervised Learner with an Unsupervised Learner. In: KDD, pp. 389-394 (2001)
-
Yamanishi, K., Takeuchi, J.: Discovering Outlier Filtering Rules from Unlabeled Data: Combining a Supervised Learner with an Unsupervised Learner. In: KDD, pp. 389-394 (2001)
-
-
-
-
14
-
-
52949134726
-
-
ITicker, http://homepage1.nifty.com/hdatelier/
-
ITicker
-
-
|