메뉴 건너뛰기




Volumn 112, Issue 1, 2008, Pages 39-54

Efficient belief propagation for higher-order cliques using linear constraint nodes

Author keywords

Belief propagation; Continuous Markov random fields; Factor graphs; Higher order cliques; Non pairwise cliques

Indexed keywords

ARTIFICIAL INTELLIGENCE; CHLORINE COMPOUNDS; COMPUTER VISION; FLOW INTERACTIONS; GRAPHIC METHODS; HIDDEN MARKOV MODELS; IMAGE ENHANCEMENT; IMAGE PROCESSING; IMAGE RECONSTRUCTION; JAVA PROGRAMMING LANGUAGE;

EID: 52949111496     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2008.05.007     Document Type: Article
Times cited : (49)

References (52)
  • 1
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in bayesian belief networks is np-hard
    • Dagum P., and Luby M. Approximating probabilistic inference in bayesian belief networks is np-hard. Artif. Intell. 60 1 (1993) 141-153
    • (1993) Artif. Intell. , vol.60 , Issue.1 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 4
    • 24644489740 scopus 로고    scopus 로고
    • K.L. Tang, C.K. Tang, T.T. Wong, Dense photometric stereo using tensorial belief propagation, in: CVPR, 2005, pp. 132-139.
    • K.L. Tang, C.K. Tang, T.T. Wong, Dense photometric stereo using tensorial belief propagation, in: CVPR, 2005, pp. 132-139.
  • 5
    • 33745818928 scopus 로고    scopus 로고
    • X. Lan, S. Roth, D.P. Huttenlocher, M.J. Black, Efficient belief propagation with learned higher-order markov random fields, in: ECCV, 2006, pp. 269-282.
    • X. Lan, S. Roth, D.P. Huttenlocher, M.J. Black, Efficient belief propagation with learned higher-order markov random fields, in: ECCV, 2006, pp. 269-282.
  • 6
    • 0035680247 scopus 로고    scopus 로고
    • N. Petrovic, I. Cohen, B.J. Frey, R. Koetter, T.S. Huang, Enforcing integrability for surface reconstruction algorithms using belief propagation in graphical models, in: CVPR, 2001, pp. 743-748.
    • N. Petrovic, I. Cohen, B.J. Frey, R. Koetter, T.S. Huang, Enforcing integrability for surface reconstruction algorithms using belief propagation in graphical models, in: CVPR, 2001, pp. 743-748.
  • 7
    • 33745825233 scopus 로고    scopus 로고
    • An iterative optimization approach for unified image segmentation and matting
    • Wang J., and Cohen M.F. An iterative optimization approach for unified image segmentation and matting. ICCV (2005) 936-943
    • (2005) ICCV , pp. 936-943
    • Wang, J.1    Cohen, M.F.2
  • 8
    • 52949139488 scopus 로고    scopus 로고
    • T. Heskes, K. Albers, B. Kappen, Approximate inference and constrained optimization, in: UAI, 2003, pp. 313-320.
    • T. Heskes, K. Albers, B. Kappen, Approximate inference and constrained optimization, in: UAI, 2003, pp. 313-320.
  • 9
    • 34948826444 scopus 로고    scopus 로고
    • B. Potetz, Efficient belief propagation for vision using linear constraint nodes, in: CVPR 2007: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Minneapolis, MN, USA, 2007.
    • B. Potetz, Efficient belief propagation for vision using linear constraint nodes, in: CVPR 2007: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Minneapolis, MN, USA, 2007.
  • 10
    • 84898045727 scopus 로고    scopus 로고
    • O.J. Woodford, I.D. Reid, P.H.S. Torr, A.W. Fitzgibbon, Fields of experts for image-based rendering, in: Proceedings of the 17th British Machine Vision Conference, Edinburgh, vol. 3, 2006, pp. 1109-1108.
    • O.J. Woodford, I.D. Reid, P.H.S. Torr, A.W. Fitzgibbon, Fields of experts for image-based rendering, in: Proceedings of the 17th British Machine Vision Conference, Edinburgh, vol. 3, 2006, pp. 1109-1108.
  • 13
    • 34948905773 scopus 로고    scopus 로고
    • 3 and beyond: solving energies with higher order cliques, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007.
    • 3 and beyond: solving energies with higher order cliques, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007.
  • 14
    • 34547279213 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Morgan Kaufman Publishers Inc., San Francisco, CA, USA
    • Geman S., and Deman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms (1987), Morgan Kaufman Publishers Inc., San Francisco, CA, USA 564-584
    • (1987) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms , pp. 564-584
    • Geman, S.1    Deman, D.2
  • 15
    • 52949131934 scopus 로고    scopus 로고
    • E.B. Sudderth, A.T. Ihler, W.T. Freeman, A.S. Willsky, Nonparametric belief propagation, Tech. Rep. MIT//LIDS P-2551, MIT, Laboratory for Information and Decision Systems, 2002.
    • E.B. Sudderth, A.T. Ihler, W.T. Freeman, A.S. Willsky, Nonparametric belief propagation, Tech. Rep. MIT//LIDS P-2551, MIT, Laboratory for Information and Decision Systems, 2002.
  • 16
    • 0031996401 scopus 로고    scopus 로고
    • Iterative decoding of compound codes by probability propagation in graphical models
    • Kschischang F.R., and Frey B.J. Iterative decoding of compound codes by probability propagation in graphical models. IEEE J. Selected Areas Commun. 16 2 (1998) 219-230
    • (1998) IEEE J. Selected Areas Commun. , vol.16 , Issue.2 , pp. 219-230
    • Kschischang, F.R.1    Frey, B.J.2
  • 17
    • 52949090848 scopus 로고    scopus 로고
    • K.P. Murphy, Y. Weiss, M.I. Jordan, Loopy belief propagation for approximate inference: an empirical study, in: UAI, 1999, pp. 467-475.
    • K.P. Murphy, Y. Weiss, M.I. Jordan, Loopy belief propagation for approximate inference: an empirical study, in: UAI, 1999, pp. 467-475.
  • 19
    • 52949120707 scopus 로고    scopus 로고
    • J.S. Yedidia, W.T. Freeman, Y. Weiss, Generalized belief propagation, in: NIPS, 2000, pp. 689-695.
    • J.S. Yedidia, W.T. Freeman, Y. Weiss, Generalized belief propagation, in: NIPS, 2000, pp. 689-695.
  • 20
    • 0011952756 scopus 로고    scopus 로고
    • Correctness of belief propagation in gaussian graphical models of arbitrary topology
    • Weiss Y., and Freeman W.T. Correctness of belief propagation in gaussian graphical models of arbitrary topology. Neural Comput. 13 10 (2001) 2173-2200
    • (2001) Neural Comput. , vol.13 , Issue.10 , pp. 2173-2200
    • Weiss, Y.1    Freeman, W.T.2
  • 21
    • 0035246323 scopus 로고    scopus 로고
    • On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs
    • Weiss Y., and Freeman W.T. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans. Inf. Theory 47 2 (2001) 736-744
    • (2001) IEEE Trans. Inf. Theory , vol.47 , Issue.2 , pp. 736-744
    • Weiss, Y.1    Freeman, W.T.2
  • 22
    • 0036636878 scopus 로고    scopus 로고
    • Cccp algorithms to minimize the Bethe and Kikuchi free energies: convergent alternatives to belief propagation
    • Yuille A.L. Cccp algorithms to minimize the Bethe and Kikuchi free energies: convergent alternatives to belief propagation. Neural Comput. 14 7 (2002) 1691-1722
    • (2002) Neural Comput. , vol.14 , Issue.7 , pp. 1691-1722
    • Yuille, A.L.1
  • 23
    • 5044222280 scopus 로고    scopus 로고
    • P.F. Felzenszwalb, D.P. Huttenlocher, Efficient belief propagation for early vision, in: CVPR, vol. 1, 2004, pp. 261-268.
    • P.F. Felzenszwalb, D.P. Huttenlocher, Efficient belief propagation for early vision, in: CVPR, vol. 1, 2004, pp. 261-268.
  • 25
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its applications to texture modeling
    • Zhu S.C., Wu Y.N., and Mumford D. Minimax entropy principle and its applications to texture modeling. Neural Comput. 9 (1997) 1627-1660
    • (1997) Neural Comput. , vol.9 , pp. 1627-1660
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3
  • 26
    • 0032025550 scopus 로고    scopus 로고
    • Frame: filters, random fields and maximum entropy-towards a unified theory for texture modeling
    • Zhu S.C., Wu Y.N., and Mumford D. Frame: filters, random fields and maximum entropy-towards a unified theory for texture modeling. Int. J. Comput. Vis. 27 2 (1998) 1-20
    • (1998) Int. J. Comput. Vis. , vol.27 , Issue.2 , pp. 1-20
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3
  • 27
    • 0033350721 scopus 로고    scopus 로고
    • G. Hinton, Products of experts, in: International Conference on Artificial Neural Networks, vol. 1, 1999, pp. 1-6.
    • G. Hinton, Products of experts, in: International Conference on Artificial Neural Networks, vol. 1, 1999, pp. 1-6.
  • 28
    • 24644467818 scopus 로고    scopus 로고
    • S. Roth, M.J. Black, Fields of experts: a framework for learning image priors, in: CVPR, 2005, pp. 860-867.
    • S. Roth, M.J. Black, Fields of experts: a framework for learning image priors, in: CVPR, 2005, pp. 860-867.
  • 29
    • 35148861156 scopus 로고    scopus 로고
    • Y. Weiss, W.T. Freeman, What makes a good model of natural images?, in: CVPR 2007: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Minneapolis, MN, USA, 2007.
    • Y. Weiss, W.T. Freeman, What makes a good model of natural images?, in: CVPR 2007: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Minneapolis, MN, USA, 2007.
  • 30
    • 34948890052 scopus 로고    scopus 로고
    • M.F. Tappen, Utilizing variational optimization to learn markov random fields, in: CVPR 2007: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Minneapolis, MN, USA, 2007.
    • M.F. Tappen, Utilizing variational optimization to learn markov random fields, in: CVPR 2007: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Minneapolis, MN, USA, 2007.
  • 31
    • 0037428136 scopus 로고    scopus 로고
    • Algorithms from statistical physics for generative models of images
    • Coughlan J.M., and Yuille A.L. Algorithms from statistical physics for generative models of images. Image Vis. Comput. 21 1 (2003) 29-36
    • (2003) Image Vis. Comput. , vol.21 , Issue.1 , pp. 29-36
    • Coughlan, J.M.1    Yuille, A.L.2
  • 35
    • 85006841501 scopus 로고    scopus 로고
    • J.R. Bergen, P. Anandan, K.J. Hanna, R. Hingorani, Hierarchical model-based motion estimation, in: ECCV'92: Proceedings of the Second European Conference on Computer Vision, Springer-Verlag, London, UK, 1992, pp. 237-252.
    • J.R. Bergen, P. Anandan, K.J. Hanna, R. Hingorani, Hierarchical model-based motion estimation, in: ECCV'92: Proceedings of the Second European Conference on Computer Vision, Springer-Verlag, London, UK, 1992, pp. 237-252.
  • 36
    • 0031377680 scopus 로고    scopus 로고
    • S. Livens, P. Scheunders, G.V. de Wouwer, P. Vautrot, D.V. Dyck, Wavelets for texture analysis, an overview, in: Proceedings of the IEE International Conference on Image Processing and Applications, Dublin, 1997, pp. 581-585.
    • S. Livens, P. Scheunders, G.V. de Wouwer, P. Vautrot, D.V. Dyck, Wavelets for texture analysis, an overview, in: Proceedings of the IEE International Conference on Image Processing and Applications, Dublin, 1997, pp. 581-585.
  • 37
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • Kumar S., and Hebert M. Discriminative random fields. Int. J. Comput. Vis. 68 2 (2006) 179-202
    • (2006) Int. J. Comput. Vis. , vol.68 , Issue.2 , pp. 179-202
    • Kumar, S.1    Hebert, M.2
  • 38
    • 0035308978 scopus 로고    scopus 로고
    • Multiscale bayesian segmentation using a trainable context model
    • Cheng H., and Bouman C.A. Multiscale bayesian segmentation using a trainable context model. IEEE Trans. Image Process. 10 4 (2001) 511-525
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.4 , pp. 511-525
    • Cheng, H.1    Bouman, C.A.2
  • 39
    • 33947507692 scopus 로고    scopus 로고
    • Location-based activity recognition
    • Weiss Y., Schölkopf B., and Platt J. (Eds), MIT Press, Cambridge, MA
    • Liao L., Fox D., and Kautz H. Location-based activity recognition. In: Weiss Y., Schölkopf B., and Platt J. (Eds). Advances in Neural Information Processing Systems 18 (2006), MIT Press, Cambridge, MA 787-794
    • (2006) Advances in Neural Information Processing Systems 18 , pp. 787-794
    • Liao, L.1    Fox, D.2    Kautz, H.3
  • 40
    • 52949123697 scopus 로고    scopus 로고
    • N.L. Zhang, D. Poole, A simple approach to bayesian network computations, in: Proceedings of the of the Tenth Canadian Conference on Artificial Intelligence, 1994, pp. 171-178.
    • N.L. Zhang, D. Poole, A simple approach to bayesian network computations, in: Proceedings of the of the Tenth Canadian Conference on Artificial Intelligence, 1994, pp. 171-178.
  • 41
    • 85037918238 scopus 로고
    • A tourist guide through treewidth
    • Bodlaender H.L. A tourist guide through treewidth. Acta Cybernetica 11 (1993) 1-21
    • (1993) Acta Cybernetica , vol.11 , pp. 1-21
    • Bodlaender, H.L.1
  • 42
    • 0141695638 scopus 로고    scopus 로고
    • Understanding belief propagation and its generalizations
    • Morgan Kaufman Publishers Inc., San Francisco, CA, USA
    • Yedidia J.S., Freeman W.T., and Weiss Y. Understanding belief propagation and its generalizations. Exploring Artificial Intelligence in the New Millennium (2003), Morgan Kaufman Publishers Inc., San Francisco, CA, USA 239-269
    • (2003) Exploring Artificial Intelligence in the New Millennium , pp. 239-269
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 43
    • 6344281239 scopus 로고    scopus 로고
    • On the uniqueness of loopy belief propagation fixed points
    • Heskes T. On the uniqueness of loopy belief propagation fixed points. Neural Comput. 16 11 (2004) 2379-2413
    • (2004) Neural Comput. , vol.16 , Issue.11 , pp. 2379-2413
    • Heskes, T.1
  • 44
    • 52949114619 scopus 로고    scopus 로고
    • A.L. Yuille, An algorithm to minimize the Bethe free energy, in: EMMCVPR, 2001.
    • A.L. Yuille, An algorithm to minimize the Bethe free energy, in: EMMCVPR, 2001.
  • 45
    • 23744515371 scopus 로고    scopus 로고
    • A new class of upper bounds on the log partition function
    • Wainwright M., Jaakkola T., and Willsky A. A new class of upper bounds on the log partition function. IEEE Trans. Inf. Theory 51 7 (2005) 2313-2335
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.7 , pp. 2313-2335
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 46
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • Kolmogorov M.-V. Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28 10 (2006) 1568-1583
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, M.-V.1
  • 47
    • 17744411678 scopus 로고    scopus 로고
    • E. Sudderth, A. Ihler, W. Freeman, A. Willsky, Nonparametric belief propagation, in: CVPR, 2003.
    • E. Sudderth, A. Ihler, W. Freeman, A. Willsky, Nonparametric belief propagation, in: CVPR, 2003.
  • 48
    • 17544404795 scopus 로고    scopus 로고
    • M. Isard, Pampas: real-valued graphical models for computer vision, in: CVPR, 2003, pp. 613-620.
    • M. Isard, Pampas: real-valued graphical models for computer vision, in: CVPR, 2003, pp. 613-620.
  • 49
    • 52949149411 scopus 로고    scopus 로고
    • A. Kozlov, D. Koller, Nonuniform dynamic discretization in hybrid networks, in: UAI, 1997, pp. 314-332.
    • A. Kozlov, D. Koller, Nonuniform dynamic discretization in hybrid networks, in: UAI, 1997, pp. 314-332.
  • 50
    • 52949084751 scopus 로고    scopus 로고
    • D. Koller, U. Lerner, D. Anguelov, A general algorithm for approximate inference and its application to hybrid bayes net, in: UAI, 1999, pp. 324-333.
    • D. Koller, U. Lerner, D. Anguelov, A general algorithm for approximate inference and its application to hybrid bayes net, in: UAI, 1999, pp. 324-333.
  • 51
    • 85199250237 scopus 로고    scopus 로고
    • J. Coughlan, H. Shen, Shape matching with belief propagation: using dynamic quantization to accommodate occlusion and clutter, in: CVPRW, 2004, p. 180.
    • J. Coughlan, H. Shen, Shape matching with belief propagation: using dynamic quantization to accommodate occlusion and clutter, in: CVPRW, 2004, p. 180.
  • 52
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Martin D., Fowlkes C., Tal D., and Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. ICCV (2001) 416-423
    • (2001) ICCV , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.