-
1
-
-
52649146893
-
-
L. AMBROSIO, N. GiGLI, AND G. SAVARÉ, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
-
L. AMBROSIO, N. GiGLI, AND G. SAVARÉ, "Gradient flows in metric spaces and in the space of probability measures", Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
-
-
-
-
3
-
-
0002578985
-
A density dependent diffusion equation in population dynamics: Stabilization to equilibrium
-
M. BERTSCH AND D. A. HILHORST, A density dependent diffusion equation in population dynamics: stabilization to equilibrium, SIAM J. Math. Anal. 17(4) (1986), 863-883.
-
(1986)
SIAM J. Math. Anal
, vol.17
, Issue.4
, pp. 863-883
-
-
BERTSCH, M.1
HILHORST, D.A.2
-
4
-
-
0035636746
-
-
P. BILER, J. DOLBEAULT, AND P. A. MARKOWICH, Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling, The Sixteenth International Conference on Transport Theory, Part II (Atlanta, GA, 1999), Transport Theory Statist. Phys. 30(4-6) (2001), 521-536.
-
P. BILER, J. DOLBEAULT, AND P. A. MARKOWICH, Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling, The Sixteenth International Conference on Transport Theory, Part II (Atlanta, GA, 1999), Transport Theory Statist. Phys. 30(4-6) (2001), 521-536.
-
-
-
-
5
-
-
34247391897
-
Semidiscretization and long-time asymptotics of nonlinear diffusion equations
-
J. A. CARRILLO, M. DI FRANCESCO, AND M. P. GUALDANI, Semidiscretization and long-time asymptotics of nonlinear diffusion equations, Commun. Math. Sci. 5, Supplement (2007), 21-53.
-
(2007)
Commun. Math. Sci
, vol.5
, Issue.SUPPL.EMENT
, pp. 21-53
-
-
CARRILLO, J.A.1
DI FRANCESCO, M.2
GUALDANI, M.P.3
-
6
-
-
18044401055
-
Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities
-
J. A. CARRILLO, A. JÜNGEL, P. A. MARKOWICH, G. TOSCANI, AND A. UNTERREITER, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math. 133(1) (2001), 1-82.
-
(2001)
Monatsh. Math
, vol.133
, Issue.1
, pp. 1-82
-
-
CARRILLO, J.A.1
JÜNGEL, A.2
MARKOWICH, P.A.3
TOSCANI, G.4
UNTERREITER, A.5
-
7
-
-
1542399709
-
entropy dissipation and mass transportation estimates
-
Kinetic equilibration rates for granular media and related equations
-
J. A. CARRILLO, R. J. MCCANN, AND C. VILLANI, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana 19(3) (2003), 971-1018.
-
(2003)
Rev. Mat. Iberoamericana
, vol.19
, Issue.3
, pp. 971-1018
-
-
CARRILLO, J.A.1
MCCANN, R.J.2
VILLANI, C.3
-
8
-
-
0242411895
-
Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dynamical turbulence
-
P.-H. CHAVANIS, Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dynamical turbulence, Phys. Rev. E 68 (2003), 036108.
-
(2003)
Phys. Rev. E
, vol.68
, pp. 036108
-
-
CHAVANIS, P.-H.1
-
9
-
-
52649131767
-
-
G. CHAVENT AND J. JAFFRE, Mathematical Models and Finite Elements for Reservoir Simulation-Single Phase, Multiphase and Multicomponent Flows through Porous Media, Studies in Mathematics and its Applications 17, North-Holland, Amsterdam, 1986.
-
G. CHAVENT AND J. JAFFRE, "Mathematical Models and Finite Elements for Reservoir Simulation-Single Phase, Multiphase and Multicomponent Flows through Porous Media", Studies in Mathematics and its Applications 17, North-Holland, Amsterdam, 1986.
-
-
-
-
10
-
-
0035457836
-
On a quasilinear degenerate system arising in semiconductors theory. I. Existence and uniqueness of solutions
-
J. I. DÍAZ, G. GALIANO, AND A. JÜNGEL, On a quasilinear degenerate system arising in semiconductors theory. I. Existence and uniqueness of solutions, Nonlinear Anal. Real World Appl. 2(3) (2001), 305 336.
-
(2001)
Nonlinear Anal. Real World Appl
, vol.2
, Issue.3
, pp. 305-336
-
-
DÍAZ, J.I.1
GALIANO, G.2
JÜNGEL, A.3
-
11
-
-
0002756571
-
Solutions to a nonlinear drift-diffusion model for semiconductors
-
electronic
-
W. FANG AND K. ITO, Solutions to a nonlinear drift-diffusion model for semiconductors, Electron. J. Differential Equations 1999(15) (1999), 1 38 (electronic).
-
(1999)
Electron. J. Differential Equations
, vol.1999
, Issue.15
, pp. 1-38
-
-
FANG, W.1
ITO, K.2
-
13
-
-
52649146259
-
-
T. D. FRANK, Nonlinear Fokker-Planck equations, Fundamentals and applications, Springer Series in Synergetics, Springer-Verlag, Berlin, 2005.
-
T. D. FRANK, "Nonlinear Fokker-Planck equations", Fundamentals and applications, Springer Series in Synergetics, Springer-Verlag, Berlin, 2005.
-
-
-
-
14
-
-
0000716180
-
On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors
-
A. JÜNGEL, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 4(5) (1994), 677-703.
-
(1994)
Math. Models Methods Appl. Sci
, vol.4
, Issue.5
, pp. 677-703
-
-
JÜNGEL, A.1
-
15
-
-
52649113654
-
-
A. JÜNGEL, Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations and their Applications 41, Birkhäuser Verlag, Basel, 2001.
-
A. JÜNGEL, "Quasi-hydrodynamic semiconductor equations", Progress in Nonlinear Differential Equations and their Applications 41, Birkhäuser Verlag, Basel, 2001.
-
-
-
-
16
-
-
52649106355
-
-
O. A. LADYZHENSKAYA AND N. N. URAL'TSEVA, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968.
-
O. A. LADYZHENSKAYA AND N. N. URAL'TSEVA, "Linear and quasilinear elliptic equations", Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968.
-
-
-
-
17
-
-
0003435706
-
-
Springer-Verlag, Vienna
-
P. A. MARKOWICH, C. A. RINGHOFER, AND C. SCHMEISER, "Semiconductor equations", Springer-Verlag, Vienna, 1990.
-
(1990)
Semiconductor equations
-
-
MARKOWICH, P.A.1
RINGHOFER, C.A.2
SCHMEISER, C.3
-
18
-
-
1542615645
-
Hydrodynamical limit for a drift-diffusion system modeling large-population dynamics
-
J. NIETO, Hydrodynamical limit for a drift-diffusion system modeling large-population dynamics, J. Math. Anal. Appl. 291(2) (2004), 716-726.
-
(2004)
J. Math. Anal. Appl
, vol.291
, Issue.2
, pp. 716-726
-
-
NIETO, J.1
-
19
-
-
0001560970
-
The geometry of dissipative evolution equations: The porous medium equation
-
F. OTTO, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26(1-2) (2001), 101-174.
-
(2001)
Comm. Partial Differential Equations
, vol.26
, Issue.1-2
, pp. 101-174
-
-
OTTO, F.1
-
21
-
-
0001357996
-
Weak solutions to Stefan problems with prescribed convection
-
J. RULLA, Weak solutions to Stefan problems with prescribed convection, SIAM J. Math. Anal. 18(6) (1987), 1784-1800.
-
(1987)
SIAM J. Math. Anal
, vol.18
, Issue.6
, pp. 1784-1800
-
-
RULLA, J.1
-
23
-
-
0037847744
-
Asymptotic beahviour for the porous medium equation posed in the whole space, Dedicated to Philippe Bénilan
-
J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space, Dedicated to Philippe Bénilan, J. Evol. Equ. 3(1) (2003), 67-118.
-
(2003)
J. Evol. Equ
, vol.3
, Issue.1
, pp. 67-118
-
-
Vázquez, J.L.1
-
24
-
-
84894531156
-
-
J. L. VAZQUEZ, The porous medium equation, Mathematical theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.
-
J. L. VAZQUEZ, "The porous medium equation", Mathematical theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.
-
-
-
-
25
-
-
52649116223
-
-
C. VILLANI, Topics in optimal transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003.
-
C. VILLANI, "Topics in optimal transportation", Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003.
-
-
-
|