-
1
-
-
33747670266
-
Learning factor graphs in polynomial time and sample complexity
-
P. Abbeel, D. Koller, and A. Y. Ng. Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research, 7:1743-1788, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1743-1788
-
-
Abbeel, P.1
Koller, D.2
Ng, A.Y.3
-
3
-
-
51949097602
-
-
D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Ng. Discriminative learning of Markov random fields for segmentation of 3D range data. 2005.
-
(2005)
Discriminative learning of Markov random fields for segmentation of 3D range data
-
-
Anguelov, D.1
Taskar, B.2
Chatalbashev, V.3
Koller, D.4
Gupta, D.5
Heitz, G.6
Ng, A.7
-
4
-
-
0001051761
-
On the computational complexity of Ising spin glass models
-
F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics A, 15(10):3241-3253, 1982.
-
(1982)
Journal of Physics A
, vol.15
, Issue.10
, pp. 3241-3253
-
-
Barahona, F.1
-
9
-
-
0031120321
-
Inducing features of random fields
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Transactions on PAMI, 19(4):390-393, 1997.
-
(1997)
IEEE Transactions on PAMI
, vol.19
, Issue.4
, pp. 390-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
12
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
August
-
N. Friedman and M. Linial. Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7(3-4) :601-620, August 2000.
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
-
13
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian relation of images
-
S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian relation of images. IEEE Transactions on PAMI, 6:721-741, 1984.
-
(1984)
IEEE Transactions on PAMI
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
14
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995.
-
(1995)
Machine Learning
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
21
-
-
6344276411
-
-
chapter 19, AAAI Press, The MIT Press
-
S. Shekhar, P. Zhang, Y. Huang, and R. R. Vatsavai. Trends in Spatial Data Mining, chapter 19, pages 357-379. AAAI Press / The MIT Press, 2004.
-
(2004)
Trends in Spatial Data Mining
, pp. 357-379
-
-
Shekhar, S.1
Zhang, P.2
Huang, Y.3
Vatsavai, R.R.4
-
22
-
-
0003614273
-
Causation, Prediction, and Search
-
MIT Press, 2nd edition
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Adaptive Computation and Machine Learning Series. MIT Press, 2nd edition, 2000.
-
(2000)
Adaptive Computation and Machine Learning Series
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
|