메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 644-655

Mining sequence classifiers for early prediction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED DIAGNOSIS; DATA MINING; DECISION TREES; FORECASTING;

EID: 52649118594     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972788.59     Document Type: Conference Paper
Times cited : (69)

References (33)
  • 1
    • 52649130736 scopus 로고    scopus 로고
    • Boosting interval based literals: Variable length and early classification
    • World Scientific
    • C. J. Alonso and J. J. Rodríguez. Boosting interval based literals: Variable length and early classification. In Data Mining in Time Series Databases. World Scientific, 2004.
    • (2004) Data Mining in Time Series Databases
    • Alonso, C.J.1    Rodríguez, J.J.2
  • 3
    • 0028895417 scopus 로고
    • Exon recognition in vertebrate splicing
    • S. M. Berget. Exon recognition in vertebrate splicing. Journal of Biological Chemistry, 270(6) :2411-2414, 1995.
    • (1995) Journal of Biological Chemistry , vol.270 , Issue.6 , pp. 2411-2414
    • Berget, S.M.1
  • 7
    • 0030853763 scopus 로고    scopus 로고
    • Meta-MEME: Motif-based hidden Markov models of protein families
    • W. N. Grundy et al. Meta-MEME: motif-based hidden Markov models of protein families. Computer Applications in the Biosciences, 13(4):397-406, 1997.
    • (1997) Computer Applications in the Biosciences , vol.13 , Issue.4 , pp. 397-406
    • Grundy, W.N.1
  • 8
    • 0023650609 scopus 로고
    • Analysis of E. Coli promoter sequences
    • C. B. Harley and R. P. Reynolds. Analysis of E. Coli promoter sequences. Nucleic Acids Res., 15(5):2343-2361, 1987.
    • (1987) Nucleic Acids Res , vol.15 , Issue.5 , pp. 2343-2361
    • Harley, C.B.1    Reynolds, R.P.2
  • 9
    • 52649137016 scopus 로고    scopus 로고
    • Prediction of Outer Membrane Proteins by Support Vector Machines Using Combinations of Gapped Amino Acid Pair Compositions
    • S. H. Huang et al. Prediction of Outer Membrane Proteins by Support Vector Machines Using Combinations of Gapped Amino Acid Pair Compositions. In BIBE'05.
    • BIBE'05
    • Huang, S.H.1
  • 10
    • 52649083678 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: a survey and empirical demonstration. In KDD'02.
    • KDD'02
    • Keogh, E.1    Kasetty, S.2
  • 11
    • 0021770224 scopus 로고
    • Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs
    • M. Kozak et al. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res, 12(2):857-872, 1984.
    • (1984) Nucleic Acids Res , vol.12 , Issue.2 , pp. 857-872
    • Kozak, M.1
  • 12
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology. Applications to protein modeling
    • A. Krogh et al. Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol, 235(5):1501-31, 1994.
    • (1994) J Mol Biol , vol.235 , Issue.5 , pp. 1501-1531
    • Krogh, A.1
  • 13
    • 2442450140 scopus 로고    scopus 로고
    • Mining features for sequence classification
    • N. Lesh et al. Mining features for sequence classification. In KDD '99.
    • KDD '99
    • Lesh, N.1
  • 14
    • 52649154049 scopus 로고    scopus 로고
    • CMAR: Accurate and efficient classification based on multiple class-association rules
    • W. Li et al. CMAR: Accurate and efficient classification based on multiple class-association rules. In ICDM'01.
    • ICDM'01
    • Li, W.1
  • 15
    • 0002776254 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu et al. Integrating classification and association rule mining. In KDD'98.
    • KDD'98
    • Liu, B.1
  • 16
    • 0032519353 scopus 로고    scopus 로고
    • GeneMark.hmm: New solutions for gene finding
    • A. V. Lukashin and M. Borodovsky. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Research, 26(4):1107-1115, 1998.
    • (1998) Nucleic Acids Research , vol.26 , Issue.4 , pp. 1107-1115
    • Lukashin, A.V.1    Borodovsky, M.2
  • 17
    • 0035521109 scopus 로고    scopus 로고
    • DNA sequence classification via an expectation maximizationalgorithm and neural networks: A case study
    • Q. Ma et al. DNA sequence classification via an expectation maximizationalgorithm and neural networks: a case study. IEEE Transactions on Systems, Man and Cybernetics, Part C, 31(4):468-475, 2001.
    • (2001) IEEE Transactions on Systems, Man and Cybernetics, Part C , vol.31 , Issue.4 , pp. 468-475
    • Ma, Q.1
  • 19
    • 0026154832 scopus 로고
    • The use of background knowledge in decision tree induction
    • M. Núnez. The use of background knowledge in decision tree induction. Mach. Learn., 6(3):231-250, 1991.
    • (1991) Mach. Learn , vol.6 , Issue.3 , pp. 231-250
    • Núnez, M.1
  • 20
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • K. J. Park and M. Kanehisa. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics, 19(13):1656-1663, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.J.1    Kanehisa, M.2
  • 21
    • 0029038960 scopus 로고
    • Predicting Pol II promoter sequences using transcription factor binding sites
    • D. S. Prestridge. Predicting Pol II promoter sequences using transcription factor binding sites. Journal of Molecular Biollogy, 249(5):923-32, 1995.
    • (1995) Journal of Molecular Biollogy , vol.249 , Issue.5 , pp. 923-932
    • Prestridge, D.S.1
  • 22
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 0000800741 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Morgan Kaufmann
    • L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. In Readings in speech recognition, Morgan Kaufmann, 1990.
    • (1990) Readings in speech recognition
    • Rabiner, L.R.1
  • 25
    • 52649138881 scopus 로고    scopus 로고
    • Frequent-Subsequence-Based Prediction of Outer Membrane Proteins
    • R. She et al. Frequent-Subsequence-Based Prediction of Outer Membrane Proteins. In KDD'03.
    • KDD'03
    • She, R.1
  • 26
    • 0034256020 scopus 로고    scopus 로고
    • Alternative pre-mRNA splicing: The logic of combinatorial control
    • C. W. Smith and J. Valcarcel. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci, 25(8):381-388, 2000.
    • (2000) Trends Biochem. Sci , vol.25 , Issue.8 , pp. 381-388
    • Smith, C.W.1    Valcarcel, J.2
  • 27
    • 52649169700 scopus 로고    scopus 로고
    • Learning interpretable SVMs for biological sequence classification
    • S. Sonnenburg et al. Learning interpretable SVMs for biological sequence classification. RECOMB'05.
    • RECOMB'05
    • Sonnenburg, S.1
  • 28
    • 0002040612 scopus 로고    scopus 로고
    • Refinement of approximate domain theories by knowledge based neural network
    • Geofrey G. Towell et al. Refinement of approximate domain theories by knowledge based neural network. In AAAI'90.
    • AAAI'90
    • Towell, G.G.1
  • 31
    • 0029387830 scopus 로고
    • Neural networks for full-scale protein sequence classification: Sequence encoding with singular value decomposition
    • C. Wu et al. Neural networks for full-scale protein sequence classification: Sequence encoding with singular value decomposition. Machine Learning, 21(1):177-193, 1995.
    • (1995) Machine Learning , vol.21 , Issue.1 , pp. 177-193
    • Wu, C.1
  • 32
    • 19544366904 scopus 로고    scopus 로고
    • CPAR: Classification based on predictive association rules
    • X. Yin and J. Han. CPAR: Classification based on predictive association rules. In SDM'2003.
    • SDM'2003
    • Yin, X.1    Han, J.2
  • 33
    • 52649175904 scopus 로고    scopus 로고
    • Mining progressive confident rules
    • M. Zhang et al. Mining progressive confident rules. In KDD'06.
    • KDD'06
    • Zhang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.