메뉴 건너뛰기




Volumn , Issue , 2008, Pages 348-351

Multilevel thresholding algorithm based on particle swarm optimization for image segmentation

Author keywords

Multilevel thresholding; Otsu method; Self adaptive particle swarm optimization

Indexed keywords

IMAGE SEGMENTATION;

EID: 52649086795     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CHICC.2008.4605745     Document Type: Conference Paper
Times cited : (32)

References (18)
  • 1
    • 52649143356 scopus 로고    scopus 로고
    • FU Z L. Some New Methods for Image Threshold Selection. Computer Application, 2000, 20(10): 13-15.
    • FU Z L. Some New Methods for Image Threshold Selection. Computer Application, 2000, 20(10): 13-15.
  • 2
    • 0028867982 scopus 로고
    • Image thresholding by minimizing the measure of fuzziness
    • HUANG L K, WANG M J. Image thresholding by minimizing the measure of fuzziness, Pattern Recognition 28, 1995:41-51.
    • (1995) Pattern Recognition , vol.28 , pp. 41-51
    • HUANG, L.K.1    WANG, M.J.2
  • 3
    • 0019390125 scopus 로고
    • Entropic thresholding: A new approach
    • PUN T. Entropic thresholding: A new approach. CVGIP, 1981,16:210-239.
    • (1981) CVGIP , vol.16 , pp. 210-239
    • PUN, T.1
  • 4
    • 0024704396 scopus 로고
    • A gray-level threshold selection method based on maximum entropy principle
    • WONG AKC, SAHOO P K. A gray-level threshold selection method based on maximum entropy principle. IEEE Trans. Systems Man and Cybernet ,1989,19: 866-871.
    • (1989) IEEE Trans. Systems Man and Cybernet , vol.19 , pp. 866-871
    • WONG AKC, S.P.K.1
  • 5
    • 0024813750 scopus 로고
    • Improvement of Kittler and Illingworth's minimum error thresholding
    • CHO S, HARALlCK R, YI S. Improvement of Kittler and Illingworth's minimum error thresholding, Pattern Recognition , 1989,22: 609-617.
    • (1989) Pattern Recognition , vol.22 , pp. 609-617
    • CHO, S.1    HARALlCK, R.2    YI, S.3
  • 6
    • 0032737679 scopus 로고    scopus 로고
    • A fast scheme for optimal thresholding using genetic algorithms
    • YIN P Y. A fast scheme for optimal thresholding using genetic algorithms. Signal Process, 1999, 72: 85-95.
    • (1999) Signal Process , vol.72 , pp. 85-95
    • YIN, P.Y.1
  • 7
    • 0029276962 scopus 로고
    • A new criterion for automatic multilevel thresholding
    • YEN J C, CHANG F J, CHANG S. A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 1995,4: 370-378.
    • (1995) IEEE Trans. Image Process , vol.4 , pp. 370-378
    • YEN, J.C.1    CHANG, F.J.2    CHANG, S.3
  • 8
    • 33846042697 scopus 로고    scopus 로고
    • A multi-level thresholding approach using a hybrid optimal estimation algorithm
    • SHU-KAI S. F, Yen Lin. A multi-level thresholding approach using a hybrid optimal estimation algorithm. Pattern Recognition Letters, 2007,28: 662-669
    • (2007) Pattern Recognition Letters , vol.28 , pp. 662-669
    • SHU-KAI, S.1    Yen Lin, F.2
  • 9
    • 33750625354 scopus 로고    scopus 로고
    • An effective co-evolutionary particle swarm optimization for constrained engineering design problems
    • HE Q, WANG L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence , 2007,20: 89-99.
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , pp. 89-99
    • HE, Q.1    WANG, L.2
  • 11
    • 18544381881 scopus 로고    scopus 로고
    • A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment
    • JIANG C W , ETORRE B. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment. Energy Conversion and Management, 2005,46: 2689-2696.
    • (2005) Energy Conversion and Management , vol.46 , pp. 2689-2696
    • JIANG, C.W.1    ETORRE, B.2
  • 12
    • 17644392098 scopus 로고    scopus 로고
    • Optimal multi-thresholding using a hybrid optimization approach
    • Erwie Zahara. SHU-KAI S F, DU-MING T. Optimal multi-thresholding using a hybrid optimization approach. Pattern Recognition Letters , 2005,26: 1082-1095.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 1082-1095
    • Zahara, E.1    SHU-KAI, S.F.2    DU-MING, T.3
  • 14
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. The Congress of Evolutionary Computation, 1999: 1951-1957.
    • (1999) The Congress of Evolutionary Computation , pp. 1951-1957
    • CLERC, M.1
  • 15
    • 84919713045 scopus 로고    scopus 로고
    • ANGELINE P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. Evolutionary programming, Springer, 1998, VII: 601-610.
    • ANGELINE P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. Evolutionary programming, Springer, 1998, VII: 601-610.
  • 16
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • OTSU N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern, 1979,9: 62-66.
    • (1979) IEEE Trans. Syst. Man Cybern , vol.9 , pp. 62-66
    • OTSU, N.1
  • 17
    • 0033675961 scopus 로고    scopus 로고
    • Stereotyping: Improving particle swarm performance with cluster analysis
    • KENNEDY J. Stereotyping: Improving particle swarm performance with cluster analysis. Proc. IEEE Int. Conference on Evolutionary Computation, 2000,2:1507-1512.
    • (2000) Proc. IEEE Int. Conference on Evolutionary Computation , vol.2 , pp. 1507-1512
    • KENNEDY, J.1
  • 18
    • 34548075562 scopus 로고    scopus 로고
    • Clustering particles for multimodal function optimization
    • PASSARO A, STARITA A. Clustering particles for multimodal function optimization. Proc. GSICE/WIVA, 2006: 1970-5077.
    • (2006) Proc. GSICE/WIVA , pp. 1970-5077
    • PASSARO, A.1    STARITA, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.