메뉴 건너뛰기




Volumn 2002, Issue , 2002, Pages

Fullback permanence for non-autonomous partial differential equations

Author keywords

Comparison techniques; Non autonomous differential equations; Permanence; Pullback attractors

Indexed keywords


EID: 52449108444     PISSN: 10726691     EISSN: 10726691     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (16)

References (27)
  • 1
    • 0032165082 scopus 로고    scopus 로고
    • Order-preserving random dynamical systems: Equilibria, attractors, applications
    • L. Arnold and I. Chueshov. Order-preserving random dynamical systems: equilibria, attractors, applications. Dyn. Stability of Systems, 13 (1998), 265-280.
    • (1998) Dyn. Stability of Systems , vol.13 , pp. 265-280
    • Arnold, L.1    Chueshov, I.2
  • 2
    • 84972493941 scopus 로고
    • Permanence of non-autonomous predatorprey systems
    • T. A. Burton and V. Hutson. Permanence of non-autonomous predatorprey systems. Diff. Int. Eqns. 4 (1991), 1269-1280.
    • (1991) Diff. Int. Eqns. , vol.4 , pp. 1269-1280
    • Burton, T.A.1    Hutson, V.2
  • 4
    • 21344446602 scopus 로고    scopus 로고
    • Practical persistence in ecological models via comparison methods
    • R. S. Cantrell and C. Cosner. Practical persistence in ecological models via comparison methods. Proc. Royal Soc. Edmb. Sect. A 126 (1996), 247-272.
    • (1996) Proc. Royal Soc. Edmb. Sect. A , vol.126 , pp. 247-272
    • Cantrell, R.S.1    Cosner, C.2
  • 6
    • 84972506380 scopus 로고
    • Uniform persistence for population models with time delay using multiple Lyapunov functions
    • Y. Cao and T. C. Gard. Uniform persistence for population models with time delay using multiple Lyapunov functions. Diff. Int. Eqns. 6 (1993), 883-898.
    • (1993) Diff. Int. Eqns. , vol.6 , pp. 883-898
    • Cao, Y.1    Gard, T.C.2
  • 7
    • 0012150698 scopus 로고    scopus 로고
    • On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems
    • to appear
    • T. Caraballo and J. A. Langa. On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dynamics of Continuous and Discrete Impulsive Systems, to appear.
    • Dynamics of Continuous and Discrete Impulsive Systems
    • Caraballo, T.1    Langa, J.A.2
  • 9
    • 0000633043 scopus 로고
    • A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations
    • V. V. Chepyzhov and M. I. Vishik. A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations. Indiana Univ. Math. J. 42 (1993), 1057-1076.
    • (1993) Indiana Univ. Math. J. , vol.42 , pp. 1057-1076
    • Chepyzhov, V.V.1    Vishik, M.I.2
  • 10
    • 0001530660 scopus 로고
    • Attractors of non-autonomous dynamical systems and their dimension
    • V. V. Chepyzhov and M. I. Vishik. Attractors of non-autonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994), 279-333.
    • (1994) J. Math. Pures Appl. , vol.73 , pp. 279-333
    • Chepyzhov, V.V.1    Vishik, M.I.2
  • 11
    • 0034964223 scopus 로고    scopus 로고
    • Order-preserving skew-product flows and non-autonomous parabolic systems
    • I. Chueshov. Order-preserving skew-product flows and non-autonomous parabolic systems. Ada Appl. Math. 65 (2001), 185-205.
    • (2001) Ada Appl. Math. , vol.65 , pp. 185-205
    • Chueshov, I.1
  • 12
    • 21844482698 scopus 로고
    • Attractors for random dynamical systems
    • H. Crauel and F. Flandoli . Attractors for random dynamical systems. Prob. Theory Related Fields, 100 (1994), 365-393.
    • (1994) Prob. Theory Related Fields , vol.100 , pp. 365-393
    • Crauel, H.1    Flandoli, F.2
  • 14
    • 0001870021 scopus 로고    scopus 로고
    • Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise
    • F. Flandoli and B. Schmalfuss. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stock. Stock. Rep. 59 (1996), 21-45.
    • (1996) Stock. Stock. Rep. , vol.59 , pp. 21-45
    • Flandoli, F.1    Schmalfuss, B.2
  • 16
    • 0000802631 scopus 로고
    • Persistence in infinite dimensional systems
    • J. Hale and P. Waltman. Persistence in infinite dimensional systems. SIAM J. Math. Anal, 20 (1989), 388-395.
    • (1989) SIAM J. Math. Anal , vol.20 , pp. 388-395
    • Hale, J.1    Waltman, P.2
  • 17
    • 0003304963 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • Berlin: Springer
    • D. Henry. Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Berlin: Springer, 1981.
    • (1981) Lecture Notes in Mathematics , vol.840
    • Henry, D.1
  • 18
    • 0003323485 scopus 로고
    • Periodic-Parabolic boundary value problems and positivity
    • Harlow Longman.
    • P. Hess. Periodic-Parabolic boundary value problems and positivity (Pitman Research Notes in Mathematics 247, Harlow Longman.1991).
    • (1991) Pitman Research Notes in Mathematics , vol.247
    • Hess, P.1
  • 19
    • 0002836763 scopus 로고
    • Permanence in dynamical systems
    • V. Hutson and K. Schmith. Permanence in dynamical systems. Math. Biosci., Ill (1992), 1-71.
    • (1992) Math. Biosci. , pp. 1-71
    • Hutson, V.1    Schmith, K.2
  • 20
    • 0038205229 scopus 로고    scopus 로고
    • Asymptotic behaviour of non-autonomous difference inclusions
    • P. E. Kloeden and B. Schmalfuss. Asymptotic behaviour of non-autonomous difference inclusions. Systems & Control Letters, 33 (1998), 275-280.
    • (1998) Systems & Control Letters , vol.33 , pp. 275-280
    • Kloeden, P.E.1    Schmalfuss, B.2
  • 21
    • 52449098573 scopus 로고    scopus 로고
    • Permanence in the nonautonomous Lotka-Volterra competition model
    • to appear
    • J.A. Langa, J.C. Robinson and A. Suárez. Permanence in the nonautonomous Lotka-Volterra competition model. J. Diff. Eqns. to appear.
    • J. Diff. Eqns.
    • Langa, J.A.1    Robinson, J.C.2    Suárez, A.3
  • 23
    • 52849106163 scopus 로고    scopus 로고
    • Dynamics of logistic equations with non-autonomous bounded coefficients
    • M. N. Nkashama. Dynamics of logistic equations with non-autonomous bounded coefficients. Electronic J. Diff. Eqns., Vol 2000, (2000), No. 2, 1-8.
    • (2000) Electronic J. Diff. Eqns. , vol.2000 , Issue.2 , pp. 1-8
    • Nkashama, M.N.1
  • 25
    • 0037867532 scopus 로고    scopus 로고
    • Attractors for the non-autonomous dynamical systems
    • ed. B. Fiedler, K. Gröger and J. Sprekels Singapore: World Scientific
    • B. Schmalfuss. Attractors for the non-autonomous dynamical systems. Proceedings of Equadiff 99 Berlin (ed. B. Fiedler, K. Gröger and J. Sprekels) 684-689 Singapore: World Scientific, 2000).
    • (2000) Proceedings of Equadiff 99 Berlin , pp. 684-689
    • Schmalfuss, B.1
  • 26
    • 84968510092 scopus 로고
    • Non-autonomous differential equations and dynamical systems
    • G. Sell. Non-autonomous differential equations and dynamical systems. Trans. Amer. Math. Soc. 127 (1967), 241-283.
    • (1967) Trans. Amer. Math. Soc. , vol.127 , pp. 241-283
    • Sell, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.