-
1
-
-
0032165082
-
Order-preserving random dynamical systems: Equilibria, attractors, applications
-
L. Arnold and I. Chueshov. Order-preserving random dynamical systems: equilibria, attractors, applications. Dyn. Stability of Systems, 13 (1998), 265-280.
-
(1998)
Dyn. Stability of Systems
, vol.13
, pp. 265-280
-
-
Arnold, L.1
Chueshov, I.2
-
2
-
-
84972493941
-
Permanence of non-autonomous predatorprey systems
-
T. A. Burton and V. Hutson. Permanence of non-autonomous predatorprey systems. Diff. Int. Eqns. 4 (1991), 1269-1280.
-
(1991)
Diff. Int. Eqns.
, vol.4
, pp. 1269-1280
-
-
Burton, T.A.1
Hutson, V.2
-
4
-
-
21344446602
-
Practical persistence in ecological models via comparison methods
-
R. S. Cantrell and C. Cosner. Practical persistence in ecological models via comparison methods. Proc. Royal Soc. Edmb. Sect. A 126 (1996), 247-272.
-
(1996)
Proc. Royal Soc. Edmb. Sect. A
, vol.126
, pp. 247-272
-
-
Cantrell, R.S.1
Cosner, C.2
-
6
-
-
84972506380
-
Uniform persistence for population models with time delay using multiple Lyapunov functions
-
Y. Cao and T. C. Gard. Uniform persistence for population models with time delay using multiple Lyapunov functions. Diff. Int. Eqns. 6 (1993), 883-898.
-
(1993)
Diff. Int. Eqns.
, vol.6
, pp. 883-898
-
-
Cao, Y.1
Gard, T.C.2
-
7
-
-
0012150698
-
On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems
-
to appear
-
T. Caraballo and J. A. Langa. On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dynamics of Continuous and Discrete Impulsive Systems, to appear.
-
Dynamics of Continuous and Discrete Impulsive Systems
-
-
Caraballo, T.1
Langa, J.A.2
-
9
-
-
0000633043
-
A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations
-
V. V. Chepyzhov and M. I. Vishik. A Hausdorff dimension estimate for kernel sections of non-autonomous evolution equations. Indiana Univ. Math. J. 42 (1993), 1057-1076.
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 1057-1076
-
-
Chepyzhov, V.V.1
Vishik, M.I.2
-
10
-
-
0001530660
-
Attractors of non-autonomous dynamical systems and their dimension
-
V. V. Chepyzhov and M. I. Vishik. Attractors of non-autonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994), 279-333.
-
(1994)
J. Math. Pures Appl.
, vol.73
, pp. 279-333
-
-
Chepyzhov, V.V.1
Vishik, M.I.2
-
11
-
-
0034964223
-
Order-preserving skew-product flows and non-autonomous parabolic systems
-
I. Chueshov. Order-preserving skew-product flows and non-autonomous parabolic systems. Ada Appl. Math. 65 (2001), 185-205.
-
(2001)
Ada Appl. Math.
, vol.65
, pp. 185-205
-
-
Chueshov, I.1
-
12
-
-
21844482698
-
Attractors for random dynamical systems
-
H. Crauel and F. Flandoli . Attractors for random dynamical systems. Prob. Theory Related Fields, 100 (1994), 365-393.
-
(1994)
Prob. Theory Related Fields
, vol.100
, pp. 365-393
-
-
Crauel, H.1
Flandoli, F.2
-
14
-
-
0001870021
-
Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise
-
F. Flandoli and B. Schmalfuss. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stock. Stock. Rep. 59 (1996), 21-45.
-
(1996)
Stock. Stock. Rep.
, vol.59
, pp. 21-45
-
-
Flandoli, F.1
Schmalfuss, B.2
-
16
-
-
0000802631
-
Persistence in infinite dimensional systems
-
J. Hale and P. Waltman. Persistence in infinite dimensional systems. SIAM J. Math. Anal, 20 (1989), 388-395.
-
(1989)
SIAM J. Math. Anal
, vol.20
, pp. 388-395
-
-
Hale, J.1
Waltman, P.2
-
17
-
-
0003304963
-
Geometric theory of semilinear parabolic equations
-
Berlin: Springer
-
D. Henry. Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Berlin: Springer, 1981.
-
(1981)
Lecture Notes in Mathematics
, vol.840
-
-
Henry, D.1
-
18
-
-
0003323485
-
Periodic-Parabolic boundary value problems and positivity
-
Harlow Longman.
-
P. Hess. Periodic-Parabolic boundary value problems and positivity (Pitman Research Notes in Mathematics 247, Harlow Longman.1991).
-
(1991)
Pitman Research Notes in Mathematics
, vol.247
-
-
Hess, P.1
-
19
-
-
0002836763
-
Permanence in dynamical systems
-
V. Hutson and K. Schmith. Permanence in dynamical systems. Math. Biosci., Ill (1992), 1-71.
-
(1992)
Math. Biosci.
, pp. 1-71
-
-
Hutson, V.1
Schmith, K.2
-
20
-
-
0038205229
-
Asymptotic behaviour of non-autonomous difference inclusions
-
P. E. Kloeden and B. Schmalfuss. Asymptotic behaviour of non-autonomous difference inclusions. Systems & Control Letters, 33 (1998), 275-280.
-
(1998)
Systems & Control Letters
, vol.33
, pp. 275-280
-
-
Kloeden, P.E.1
Schmalfuss, B.2
-
21
-
-
52449098573
-
Permanence in the nonautonomous Lotka-Volterra competition model
-
to appear
-
J.A. Langa, J.C. Robinson and A. Suárez. Permanence in the nonautonomous Lotka-Volterra competition model. J. Diff. Eqns. to appear.
-
J. Diff. Eqns.
-
-
Langa, J.A.1
Robinson, J.C.2
Suárez, A.3
-
23
-
-
52849106163
-
Dynamics of logistic equations with non-autonomous bounded coefficients
-
M. N. Nkashama. Dynamics of logistic equations with non-autonomous bounded coefficients. Electronic J. Diff. Eqns., Vol 2000, (2000), No. 2, 1-8.
-
(2000)
Electronic J. Diff. Eqns.
, vol.2000
, Issue.2
, pp. 1-8
-
-
Nkashama, M.N.1
-
25
-
-
0037867532
-
Attractors for the non-autonomous dynamical systems
-
ed. B. Fiedler, K. Gröger and J. Sprekels Singapore: World Scientific
-
B. Schmalfuss. Attractors for the non-autonomous dynamical systems. Proceedings of Equadiff 99 Berlin (ed. B. Fiedler, K. Gröger and J. Sprekels) 684-689 Singapore: World Scientific, 2000).
-
(2000)
Proceedings of Equadiff 99 Berlin
, pp. 684-689
-
-
Schmalfuss, B.1
-
26
-
-
84968510092
-
Non-autonomous differential equations and dynamical systems
-
G. Sell. Non-autonomous differential equations and dynamical systems. Trans. Amer. Math. Soc. 127 (1967), 241-283.
-
(1967)
Trans. Amer. Math. Soc.
, vol.127
, pp. 241-283
-
-
Sell, G.1
|