|
Volumn 14, Issue 9-10, 2008, Pages 1631-1649
|
Space-time discretization of an integro-differential equation modeling quasi-static fractional-order viscoelasticity
|
Author keywords
A posteriori; A priori; Adaptivity.; Discontinuous Galerkin; Error estimate; Finite element; Sparse quadrature; Weakly singular kernel
|
Indexed keywords
COMPUTATIONAL FLUID DYNAMICS;
DIFFERENCE EQUATIONS;
DIFFERENTIAL EQUATIONS;
DIFFERENTIATION (CALCULUS);
ERROR ANALYSIS;
FINITE ELEMENT METHOD;
GALERKIN METHODS;
INTEGRODIFFERENTIAL EQUATIONS;
MATERIALS SCIENCE;
REAL TIME SYSTEMS;
STANDARDS;
VISCOELASTICITY;
A POSTERIORI;
A POSTERIORI ERROR ESTIMATES;
A PRIORI;
ADAPTIVE STRATEGIES;
ADAPTIVITY.;
CONVOLUTION INTEGRALS;
DISCONTINUOUS GALERKIN;
DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD;
ERROR ESTIMATE;
FINITE ELEMENT;
FRACTIONAL ORDERS;
GALERKIN FINITE ELEMENT METHODS;
INTEGRO-DIFFERENTIAL EQUATION;
PARTIAL DERIVATIVES;
QUASI-STATIC;
QUASI-STATIC MODEL;
SECOND ORDERS;
SPACE-TIME DISCRETIZATION;
SPARSE QUADRATURE;
SPATIAL VARIABLES;
TIME STEPPING;
TIME VARIABLE;
VISCOELASTIC MATERIALS;
VOLTERRA INTEGRAL EQUATIONS;
WEAKLY SINGULAR KERNEL;
INTEGRAL EQUATIONS;
|
EID: 52349117783
PISSN: 10775463
EISSN: 17412986
Source Type: Journal
DOI: 10.1177/1077546307087399 Document Type: Conference Paper |
Times cited : (19)
|
References (8)
|