-
1
-
-
0003796630
-
-
Pure and Applied Mathematics, 65. Academic [Harcourt Brace Jovanovich, New York-London
-
Adams, R. A. Sobolev spaces. Pure and Applied Mathematics, 65. Academic [Harcourt Brace Jovanovich], New York-London, 1975.
-
(1975)
Sobolev spaces
-
-
Adams, R.A.1
-
2
-
-
40749110015
-
Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models
-
Cao, Y.; Lunasin, E. M.; Titi, E. S. Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4 (2006), no. 4, 823-848.
-
(2006)
Commun. Math. Sci
, vol.4
, Issue.4
, pp. 823-848
-
-
Cao, Y.1
Lunasin, E.M.2
Titi, E.S.3
-
3
-
-
0002223508
-
On the critical dissipative quasi-geostrophic equation
-
special issue, no. 1, 97-107
-
Constantin, P.; Cordoba, D.; Wu, J. On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50 (2001), special issue, no. 1, 97-107.
-
(2001)
Indiana Univ. Math. J
, vol.50
-
-
Constantin, P.1
Cordoba, D.2
Wu, J.3
-
5
-
-
0043172071
-
Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar
-
Constantin, P.; Majda, A. J; Tabak, E. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7 (1994), no. 6, 1495-1533.
-
(1994)
Nonlinearity
, vol.7
, Issue.6
, pp. 1495-1533
-
-
Constantin, P.1
Majda, A.J.2
Tabak, E.3
-
6
-
-
0000579087
-
Nonsingular surface quasi-geostrophic flow
-
Constantin, P.; Nie, Q.; Schörghofer, N. Nonsingular surface quasi-geostrophic flow. Phys. Lett. A 241 (1998), no. 3, 168-172.
-
(1998)
Phys. Lett. A
, vol.241
, Issue.3
, pp. 168-172
-
-
Constantin, P.1
Nie, Q.2
Schörghofer, N.3
-
7
-
-
0000014711
-
Front formation in an active scalar equation
-
Constantin, P.; Nie, Q.; Schörghofer, N. Front formation in an active scalar equation. Phys. Rev. E (3) 60 (1999), no. 3, 2858-2863.
-
(1999)
Phys. Rev. E (3)
, vol.60
, Issue.3
, pp. 2858-2863
-
-
Constantin, P.1
Nie, Q.2
Schörghofer, N.3
-
8
-
-
0032264533
-
Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation
-
Cordoba, D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. of Math. (2) 148 (1998), no. 3, 1135-1152.
-
(1998)
Ann. of Math. (2)
, vol.148
, Issue.3
, pp. 1135-1152
-
-
Cordoba, D.1
-
9
-
-
52349116946
-
-
Ladyzhenskaya, O. A. The mathematical theory of viscous incompressible flow. 2nd English ed., revised and enlarged. Mathematics and Its Applications, 2. Gordon and Breach, New York-London-Paris, 1969.
-
Ladyzhenskaya, O. A. The mathematical theory of viscous incompressible flow. 2nd English ed., revised and enlarged. Mathematics and Its Applications, 2. Gordon and Breach, New York-London-Paris, 1969.
-
-
-
-
10
-
-
0003218752
-
The boundary value problems of mathematical physics
-
Springer, New York
-
Ladyzhenskaya, O. A. The boundary value problems of mathematical physics. Applied Mathematical Sciences, 49. Springer, New York, 1985.
-
(1985)
Applied Mathematical Sciences
, vol.49
-
-
Ladyzhenskaya, O.A.1
-
12
-
-
85136560719
-
-
Majda, A. J.; Tabak, E. G. A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D 98 (1996), no. 2-4, 515-522.
-
Majda, A. J.; Tabak, E. G. A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D 98 (1996), no. 2-4, 515-522.
-
-
-
-
13
-
-
52349114633
-
-
Oskolkov, P. A. The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973), 98-136.
-
Oskolkov, P. A. The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973), 98-136.
-
-
-
|