메뉴 건너뛰기




Volumn 4123 LNCS, Issue , 2006, Pages 578-594

Lower bounds for divergence in the central limit theorem

(1)  Harremoës, Peter a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords

CENTRAL LIMIT THEOREM; INFORMATION DIVERGENCE; LOWER BOUNDS; RATE OF CONVERGENCE;

EID: 52349083624     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11889342_35     Document Type: Conference Paper
Times cited : (2)

References (13)
  • 1
    • 0035397522 scopus 로고    scopus 로고
    • Information geometry on hierarchy of probability distributions
    • S.I. Amari, Information geometry on hierarchy of probability distributions, IEEE Trans. Inform. Theory, Vol. 47, 1701-1711, 2001.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 1701-1711
    • Amari, S.I.1
  • 4
    • 38149148210 scopus 로고
    • Testing for Poissonity-normality vs. other infinite divisibility
    • A.K. Gupta, T.F. Móri, and G.J. Székely, Testing for Poissonity-normality vs. other infinite divisibility, Stat. Prabab. Letters, 19, 245-248, 1994.
    • (1994) Stat. Prabab. Letters , vol.19 , pp. 245-248
    • Gupta, A.K.1    Móri, T.F.2    Székely, G.J.3
  • 5
    • 4243599363 scopus 로고    scopus 로고
    • Convergence to the Poisson distribution in information divergence
    • Mathematical department, University of Copenhagen
    • P.Harremoës, Convergence to the Poisson distribution in information divergence, Technical Report 2, Mathematical department, University of Copenhagen, 2003.
    • (2003) Technical Report 2
    • Harremoës, P.1
  • 6
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics, i and II
    • and 171-190
    • E.T. Jaynes, Information theory and statistical mechanics, I and II, Physical Reviews, 106 and 108, 620-630 and 171-190, 1957.
    • (1957) Physical Reviews , vol.106-108 , pp. 620-630
    • Jaynes, E.T.1
  • 8
    • 0042760487 scopus 로고    scopus 로고
    • Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions
    • C.A.J. Klaassen, P.J. Mokveld, and B.van Es, Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions, Statistical and Probability Letters, 50, 2, 131-135, 2000.
    • (2000) Statistical and Probability Letters , vol.50 , Issue.2 , pp. 131-135
    • Klaassen, C.A.J.1    Mokveld, P.J.2    Van Es, B.3
  • 9
    • 0036341987 scopus 로고    scopus 로고
    • The relation between a rate of convergence of moments of normed sums and the Chebyshev-Hermite moments
    • A.E. Kondratenko, The relation between a rate of convergence of moments of normed sums and the Chebyshev-Hermite moments, Theory Probab. Appl., 46, 2, 352-355, 2002.
    • (2002) Theory Probab. Appl. , vol.46 , Issue.2 , pp. 352-355
    • Kondratenko, A.E.1
  • 10
    • 0000220785 scopus 로고
    • The Cramér-Rao functional and limiting laws
    • E.Mayer-Wolf, The Cramér-Rao functional and limiting laws, Ann. of Probab., 18, 840-850, 1990.
    • (1990) Ann. of Probab. , vol.18 , pp. 840-850
    • Mayer-Wolf, E.1
  • 11
    • 0006386053 scopus 로고
    • Mathematical contributions to the theory of evolution, xix; second supplement to a memoir on skew variation
    • K.Pearson, Mathematical contributions to the theory of evolution, xix; second supplement to a memoir on skew variation, Philos. Trans. Roy. Soc. London Ser. A 216, 429-257, 1916.
    • (1916) Philos. Trans. Roy. Soc. London Ser. A , vol.216 , pp. 429-1257
    • Pearson, K.1
  • 12
    • 38249007266 scopus 로고
    • Sharp inequalities between skewness and kurtosis
    • V.K. Rohatgi and G.J. Székely, Sharp inequalities between skewness and kurtosis, Statist. Probab. Lett., 8, 197-299, 1989.
    • (1989) Statist. Probab. Lett. , vol.8 , pp. 197-299
    • Rohatgi, V.K.1    Székely, G.J.2
  • 13
    • 0002591570 scopus 로고
    • Information theoretical optimization techniques
    • F. Topsøe, Information theoretical optimization techniques, Kybernetika, 15, 1, 8 - 27, 1979.
    • (1979) Kybernetika , vol.15 , Issue.1 , pp. 8-27
    • Topsøe, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.