-
1
-
-
40749101520
-
Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review
-
Y. Assaf and O. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review, J. Mol. Neurosci. 34 (2008), pp. 51-61.
-
(2008)
J. Mol. Neurosci
, vol.34
, pp. 51-61
-
-
Assaf, Y.1
Pasternak, O.2
-
2
-
-
34548425659
-
Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI
-
M. Karssemeijer and B. Lelieveldt, eds, Springer-Verlag, Berlin
-
A. Barmpoutis, B. Jian, B.C. Vemuri, and TM. Shepherd, Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI, in Information Processing and Medical Imaging, M. Karssemeijer and B. Lelieveldt, eds., Springer-Verlag, Berlin, 2007, pp. 308-319.
-
(2007)
Information Processing and Medical Imaging
, pp. 308-319
-
-
Barmpoutis, A.1
Jian, B.2
Vemuri, B.C.3
Shepherd, T.M.4
-
3
-
-
0036869232
-
Diffusion-tensor MRI: Theory, experimental design and data analysis - a technical review
-
P.J. Basser and D.K. Jones, Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review, NMR in Biomed. 15 (2002), pp. 456-467.
-
(2002)
NMR in Biomed
, vol.15
, pp. 456-467
-
-
Basser, P.J.1
Jones, D.K.2
-
4
-
-
52149083096
-
-
preprint , School of Mathematical Science, Peking University, Beijing, China
-
K.C. Chang, K. Pearson, and T. Zhang, On eigenvalues of real symmetric tensors, preprint (2008), School of Mathematical Science, Peking University, Beijing, China.
-
(2008)
On eigenvalues of real symmetric tensors
-
-
Chang, K.C.1
Pearson, K.2
Zhang, T.3
-
5
-
-
0003868058
-
-
Springer-Verlag, New York
-
D. Cox, J. Little, and D. O'Shea, Using Algebraic Geometry, Springer-Verlag, New York, 1998.
-
(1998)
Using Algebraic Geometry
-
-
Cox, D.1
Little, J.2
O'Shea, D.3
-
6
-
-
19544371362
-
Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of maganetic resonance imaging
-
J.H. Jensen, J.A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of maganetic resonance imaging, Magn. Resonan. Med. 53 (2005), pp. 1432-1440.
-
(2005)
Magn. Resonan. Med
, vol.53
, pp. 1432-1440
-
-
Jensen, J.H.1
Helpern, J.A.2
Ramani, A.3
Lu, H.4
Kaczynski, K.5
-
7
-
-
7544247899
-
Squashing peanuts and smashing pumpkins': How noise distorts diffusion weighted MR data
-
D.K. Jones and P.J. Basser, 'Squashing peanuts and smashing pumpkins': how noise distorts diffusion weighted MR data, Magn. Resonan. Med. 52 (2004), pp. 979-993.
-
(2004)
Magn. Resonan. Med
, vol.52
, pp. 979-993
-
-
Jones, D.K.1
Basser, P.J.2
-
8
-
-
0035080580
-
Diffusion tensor imaging: Concepts and applications
-
D. Le Bihan, J.F. Mangin, C. Poupon, C.A. Clark, S. Pappata, N. Molko, and H. Chabriat, Diffusion tensor imaging: concepts and applications, J. Magn. Resonan. Imag. 13 (2001), pp. 534-546.
-
(2001)
J. Magn. Resonan. Imag
, vol.13
, pp. 534-546
-
-
Le Bihan, D.1
Mangin, J.F.2
Poupon, C.3
Clark, C.A.4
Pappata, S.5
Molko, N.6
Chabriat, H.7
-
9
-
-
2342542443
-
Characterizing non-Gaussian diffusion by generalized diffusion tensors
-
C. Liu, R. Bammer, B. Acar, and M.E. Mosely, Characterizing non-Gaussian diffusion by generalized diffusion tensors, Magn. Resonan. Med. 51 (2004), pp. 924-937.
-
(2004)
Magn. Resonan. Med
, vol.51
, pp. 924-937
-
-
Liu, C.1
Bammer, R.2
Acar, B.3
Mosely, M.E.4
-
10
-
-
33645528768
-
Three-dimensional, characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging
-
H. Lu, J.H. Jensen, A. Ramani, and J.A. Helpern, Three-dimensional, characterization of non-Gaussian water diffusion in humans using diffusion kurtosis imaging, NMR Biomed. 19 (2006), pp. 236-247.
-
(2006)
NMR Biomed
, vol.19
, pp. 236-247
-
-
Lu, H.1
Jensen, J.H.2
Ramani, A.3
Helpern, J.A.4
-
11
-
-
0024999038
-
2-weighted MRI and spectroscopy
-
2-weighted MRI and spectroscopy, Magn. Resonan. Med. 14 (1990), pp. 330-346.
-
(1990)
Magn. Resonan. Med
, vol.14
, pp. 330-346
-
-
Moseley, M.E.1
Cohen, Y.2
Mintorovitch, J.3
Chileuitt, L.4
Shimizu, H.5
Kucharczyk, J.6
Wendland, M.F.7
Weinstein, P.R.8
-
12
-
-
33846621614
-
The degree of the E-characteristic polynomial of an even order tensor
-
G. Ni, L. Qi, F. Wang, and Y. Wang, The degree of the E-characteristic polynomial of an even order tensor, J. Math. Anal. Appl. 329 (2007), pp. 1218-1229.
-
(2007)
J. Math. Anal. Appl
, vol.329
, pp. 1218-1229
-
-
Ni, G.1
Qi, L.2
Wang, F.3
Wang, Y.4
-
13
-
-
0242290986
-
Generalized diffusion tensor imaging and analytical relationships between diffusion, tensor imaging and high angular resolution diffusion imaging
-
E. Ozarslan and T.H. Mareci, Generalized diffusion tensor imaging and analytical relationships between diffusion, tensor imaging and high angular resolution diffusion imaging, Magn. Resonan. Med. 50 (2003), pp. 955-965.
-
(2003)
Magn. Resonan. Med
, vol.50
, pp. 955-965
-
-
Ozarslan, E.1
Mareci, T.H.2
-
14
-
-
4243285073
-
Qualification of diffusion tensor imaging predicts diffuse axonal injury following traumatic brain injury in rats
-
E. Ozarslan, S.M. DeFord, T.H. Mareci, and R.L. Hayes, Qualification of diffusion tensor imaging predicts diffuse axonal injury following traumatic brain injury in rats, J. Neurotrauma 19 (2002), p. 1285.
-
(2002)
J. Neurotrauma
, vol.19
, pp. 1285
-
-
Ozarslan, E.1
DeFord, S.M.2
Mareci, T.H.3
Hayes, R.L.4
-
15
-
-
0029908076
-
Toward a quantitative assessment of diffusion anisotropy
-
C. Pierpaoli and P.J. Basser, Toward a quantitative assessment of diffusion anisotropy, Magn. Resonan. Med. 36 (1996), pp. 893-906.
-
(1996)
Magn. Resonan. Med
, vol.36
, pp. 893-906
-
-
Pierpaoli, C.1
Basser, P.J.2
-
16
-
-
27744582534
-
Eigenvalues of a real super-symmetric tensor
-
L. Qi, Eigenvalues of a real super-symmetric tensor, J. Symb. Comput. 40 (2005), pp. 1302-1324.
-
(2005)
J. Symb. Comput
, vol.40
, pp. 1302-1324
-
-
Qi, L.1
-
17
-
-
33750796673
-
Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface, defined by them
-
_, Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface, defined by them, J. Symb. Comput. 41 (2006), pp. 1309-1327.
-
(2006)
J. Symb. Comput
, vol.41
, pp. 1309-1327
-
-
Qi, L.1
-
18
-
-
33750335770
-
Eigenvalues and invariants of tensors
-
_, Eigenvalues and invariants of tensors, J. Math. Anal. Appl. 325 (2007), pp. 1363-1377.
-
(2007)
J. Math. Anal. Appl
, vol.325
, pp. 1363-1377
-
-
Qi, L.1
-
19
-
-
51249084984
-
D-Eigenvalues of diffusion kurtosis tensors
-
in press, DOI: 10.1016/j.cam.2007.10.012
-
L. Qi, Y. Wang, and E.X. Wu, D-Eigenvalues of diffusion kurtosis tensors, J. Comput. Appl. Math, (in press), DOI: 10.1016/j.cam.2007.10.012.
-
J. Comput. Appl. Math
-
-
Qi, L.1
Wang, Y.2
Wu, E.X.3
-
20
-
-
0242632579
-
Solving Systems of Polynomial Equations
-
CBMS Regional Conferences, American Mathematical Society, Providence, RI
-
B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Regional Conferences Series, No. 97, American Mathematical Society, Providence, RI, 2002.
-
(2002)
Series
, vol.97
-
-
Sturmfels, B.1
-
21
-
-
45849112507
-
Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis
-
E.S. Hui, M.M. Cheung, L. Qi, and E.X. Wu, Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis, Neuroimage 42 (2008), pp. 122-134.
-
(2008)
Neuroimage
, vol.42
, pp. 122-134
-
-
Hui, E.S.1
Cheung, M.M.2
Qi, L.3
Wu, E.X.4
|