-
1
-
-
0004167131
-
-
Johann Ambrosius Barth, Heidelberg
-
Cvetković D.M., Doob M., and Sachs H. Spectra of Graphs, Theory and applications. third ed. (1995), Johann Ambrosius Barth, Heidelberg
-
(1995)
Spectra of Graphs, Theory and applications. third ed.
-
-
Cvetković, D.M.1
Doob, M.2
Sachs, H.3
-
2
-
-
0141607701
-
Which graphs are determined by their spectrum?
-
van Dam E.R., and Haemers W.H. Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003) 241-272
-
(2003)
Linear Algebra Appl.
, vol.373
, pp. 241-272
-
-
van Dam, E.R.1
Haemers, W.H.2
-
3
-
-
52149098206
-
-
E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math., in press.
-
E.R. van Dam, W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math., in press.
-
-
-
-
6
-
-
2442640405
-
On the spectral radii of topologically equivalent graphs
-
Recent advances in graph theory, Academia, Prague
-
Hoffman A.J., and Smith J.H. On the spectral radii of topologically equivalent graphs. Recent advances in graph theory. Proc. Second Czechoslovak Sympos., Prague, 1974 (1975), Academia, Prague 273-281
-
(1975)
Proc. Second Czechoslovak Sympos., Prague, 1974
, pp. 273-281
-
-
Hoffman, A.J.1
Smith, J.H.2
-
7
-
-
0347600332
-
Some results on starlike trees and sunlike graphs
-
Lepović M. Some results on starlike trees and sunlike graphs. J. Appl. Math. Comput. 11 (2003) 109-123
-
(2003)
J. Appl. Math. Comput.
, vol.11
, pp. 109-123
-
-
Lepović, M.1
-
8
-
-
31244437055
-
No starlike trees are cospectral
-
Lepović M., and Gutman I. No starlike trees are cospectral. Discrete Math. 242 (2002) 291-295
-
(2002)
Discrete Math.
, vol.242
, pp. 291-295
-
-
Lepović, M.1
Gutman, I.2
-
10
-
-
33847273846
-
Starlike trees are determined by their Laplacian spectrum
-
Omidi G.R., and Tajbakhsh K. Starlike trees are determined by their Laplacian spectrum. Linear Algebra Appl. 422 (2007) 654-658
-
(2007)
Linear Algebra Appl.
, vol.422
, pp. 654-658
-
-
Omidi, G.R.1
Tajbakhsh, K.2
-
11
-
-
0016219515
-
Computing the characteristic polynomial of a graph
-
Graphs and combinatorics, Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973, Springer, Berlin
-
Schwenk A.J. Computing the characteristic polynomial of a graph. Graphs and combinatorics, Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973. Lecture Notes in Math. vol. 406 (1974), Springer, Berlin 153-172
-
(1974)
Lecture Notes in Math.
, vol.406
, pp. 153-172
-
-
Schwenk, A.J.1
-
12
-
-
33846678318
-
The spectral radii of a graph and its line graph
-
Shi L. The spectral radii of a graph and its line graph. Linear Algebra Appl. 422 (2007) 58-66
-
(2007)
Linear Algebra Appl.
, vol.422
, pp. 58-66
-
-
Shi, L.1
-
13
-
-
52149122537
-
-
J.H. Smith, Some Properties of the Spectrum of a Graph, 1970 Combinatorial Structures and their Applications, Gordon and Breach, New York, pp. 403-406.
-
J.H. Smith, Some Properties of the Spectrum of a Graph, 1970 Combinatorial Structures and their Applications, Gordon and Breach, New York, pp. 403-406.
-
-
-
-
14
-
-
33644863426
-
On the spectral characterization of T-shape trees
-
Wang W., and Xu C.-X. On the spectral characterization of T-shape trees. Linear Algebra Appl. 414 (2006) 492-501
-
(2006)
Linear Algebra Appl.
, vol.414
, pp. 492-501
-
-
Wang, W.1
Xu, C.-X.2
|