메뉴 건너뛰기




Volumn WS-07-05, Issue , 2007, Pages 34-39

On comparison of feature selection algorithms

Author keywords

[No Author keywords available]

Indexed keywords

EVALUATION METHODS; FEATURE SELECTION; FEATURE SELECTION ALGORITHMS; FS ALGORITHMS; MACHINE-LEARNING; TECHNICAL REPORTS;

EID: 52049116945     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (19)
  • 1
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A. L., and Langley, P. 1997. Selection of relevant features and examples in machine learning. AI97:245-271.
    • (1997) AI , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 2
    • 1942452791 scopus 로고    scopus 로고
    • Choosing between two learning algorithms based on calibrated tests
    • Bouckaert, R. R. 2003. Choosing between two learning algorithms based on calibrated tests. In ICML.
    • (2003) ICML
    • Bouckaert, R.R.1
  • 3
    • 14544275490 scopus 로고    scopus 로고
    • Estimating replicability of classifier learning experiments
    • Bouckaert, R. R. 2004. Estimating replicability of classifier learning experiments. In ICML.
    • (2004) ICML
    • Bouckaert, R.R.1
  • 4
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7): 1895-1923.
    • (1998) Neural Comput , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 5
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy, J. G., and Brodley, C. E. 2004. Feature selection for unsupervised learning. JMLR 5:845-889.
    • (2004) JMLR , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., and Elisseeff, A. 2003. An introduction to variable and feature selection. JMLR 3:1157-1182.
    • (2003) JMLR , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 7
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain, A., and Zongker, D. 1997. Feature selection: Evaluation, application, and small sample performance. IEEE TPAMI 19(2): 153-158.
    • (1997) IEEE TPAMI , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 8
    • 85099325734 scopus 로고
    • Irrelevant feature and the subset selection problem
    • John, G. H.; Kohavi, R.; and Pfleger, K. 1994. Irrelevant feature and the subset selection problem. In ICML.
    • (1994) ICML
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 9
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI.
    • (1995) IJCAI
    • Kohavi, R.1
  • 10
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Kononenko, I. 1994. Estimating attributes: Analysis and extensions of relief. In ECML, 171-182.
    • (1994) ECML , pp. 171-182
    • Kononenko, I.1
  • 11
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H., and Yu, L. 2005. Toward integrating feature selection algorithms for classification and clustering. IEEE TKDE 17:491-502.
    • (2005) IEEE TKDE , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 12
    • 84870267223 scopus 로고    scopus 로고
    • L.Welch, B. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34:28-35.
    • L.Welch, B. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34:28-35.
  • 13
    • 1842783448 scopus 로고    scopus 로고
    • Using machine learning to design and interpret geneexpression microarrays
    • Molla, M.; Waddell, M.; Page, D.; and Shavlik, J. 2004. Using machine learning to design and interpret geneexpression microarrays. AI Mag. 25(1):23-44.
    • (2004) AI Mag , vol.25 , Issue.1 , pp. 23-44
    • Molla, M.1    Waddell, M.2    Page, D.3    Shavlik, J.4
  • 14
    • 0006494973 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C., and Bengio, Y. 1999. Inference for the generalization error. In NIPS.
    • (1999) NIPS
    • Nadeau, C.1    Bengio, Y.2
  • 15
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen, J. 2003. Overfitting in making comparisons between variable selection methods. JMLR 3:1371-1382.
    • (2003) JMLR , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 16
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S. 1997. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1(3):317-328.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.1
  • 17
    • 0003539213 scopus 로고
    • The MONK's problems: A performance comparison of different learning algorithms
    • Technical Report CS-91-197, Pittsburgh, PA
    • Thrun, S. B.; etal. 1991. The MONK's problems: A performance comparison of different learning algorithms. Technical Report CS-91-197, Pittsburgh, PA.
    • (1991)
    • Thrun, S.B.1
  • 18
    • 18244409687 scopus 로고    scopus 로고
    • van 't Veer, L. J.; etal. 2002. gene expression profiling predicts clinical outcome of breast cancer. Nature.
    • van 't Veer, L. J.; etal. 2002. gene expression profiling predicts clinical outcome of breast cancer. Nature.
  • 19
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Yu, L., and Liu, H. 2003. Feature selection for high-dimensional data: a fast correlation-based filter solution. In ICML
    • (2003) ICML
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.