-
1
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum, A. L., and Langley, P. 1997. Selection of relevant features and examples in machine learning. AI97:245-271.
-
(1997)
AI
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
2
-
-
1942452791
-
Choosing between two learning algorithms based on calibrated tests
-
Bouckaert, R. R. 2003. Choosing between two learning algorithms based on calibrated tests. In ICML.
-
(2003)
ICML
-
-
Bouckaert, R.R.1
-
3
-
-
14544275490
-
Estimating replicability of classifier learning experiments
-
Bouckaert, R. R. 2004. Estimating replicability of classifier learning experiments. In ICML.
-
(2004)
ICML
-
-
Bouckaert, R.R.1
-
4
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T. G. 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7): 1895-1923.
-
(1998)
Neural Comput
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
5
-
-
26444454606
-
Feature selection for unsupervised learning
-
Dy, J. G., and Brodley, C. E. 2004. Feature selection for unsupervised learning. JMLR 5:845-889.
-
(2004)
JMLR
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
6
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., and Elisseeff, A. 2003. An introduction to variable and feature selection. JMLR 3:1157-1182.
-
(2003)
JMLR
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
7
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
Jain, A., and Zongker, D. 1997. Feature selection: Evaluation, application, and small sample performance. IEEE TPAMI 19(2): 153-158.
-
(1997)
IEEE TPAMI
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
8
-
-
85099325734
-
Irrelevant feature and the subset selection problem
-
John, G. H.; Kohavi, R.; and Pfleger, K. 1994. Irrelevant feature and the subset selection problem. In ICML.
-
(1994)
ICML
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
9
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Kohavi, R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI.
-
(1995)
IJCAI
-
-
Kohavi, R.1
-
10
-
-
84992726552
-
Estimating attributes: Analysis and extensions of relief
-
Kononenko, I. 1994. Estimating attributes: Analysis and extensions of relief. In ECML, 171-182.
-
(1994)
ECML
, pp. 171-182
-
-
Kononenko, I.1
-
11
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu, H., and Yu, L. 2005. Toward integrating feature selection algorithms for classification and clustering. IEEE TKDE 17:491-502.
-
(2005)
IEEE TKDE
, vol.17
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
12
-
-
84870267223
-
-
L.Welch, B. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34:28-35.
-
L.Welch, B. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34:28-35.
-
-
-
-
13
-
-
1842783448
-
Using machine learning to design and interpret geneexpression microarrays
-
Molla, M.; Waddell, M.; Page, D.; and Shavlik, J. 2004. Using machine learning to design and interpret geneexpression microarrays. AI Mag. 25(1):23-44.
-
(2004)
AI Mag
, vol.25
, Issue.1
, pp. 23-44
-
-
Molla, M.1
Waddell, M.2
Page, D.3
Shavlik, J.4
-
14
-
-
0006494973
-
Inference for the generalization error
-
Nadeau, C., and Bengio, Y. 1999. Inference for the generalization error. In NIPS.
-
(1999)
NIPS
-
-
Nadeau, C.1
Bengio, Y.2
-
15
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
Reunanen, J. 2003. Overfitting in making comparisons between variable selection methods. JMLR 3:1371-1382.
-
(2003)
JMLR
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
16
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
Salzberg, S. 1997. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1(3):317-328.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 317-328
-
-
Salzberg, S.1
-
17
-
-
0003539213
-
The MONK's problems: A performance comparison of different learning algorithms
-
Technical Report CS-91-197, Pittsburgh, PA
-
Thrun, S. B.; etal. 1991. The MONK's problems: A performance comparison of different learning algorithms. Technical Report CS-91-197, Pittsburgh, PA.
-
(1991)
-
-
Thrun, S.B.1
-
18
-
-
18244409687
-
-
van 't Veer, L. J.; etal. 2002. gene expression profiling predicts clinical outcome of breast cancer. Nature.
-
van 't Veer, L. J.; etal. 2002. gene expression profiling predicts clinical outcome of breast cancer. Nature.
-
-
-
-
19
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
Yu, L., and Liu, H. 2003. Feature selection for high-dimensional data: a fast correlation-based filter solution. In ICML
-
(2003)
ICML
-
-
Yu, L.1
Liu, H.2
|