-
1
-
-
0004267735
-
-
Kluwer Academic Publishers, Norwell, MA, USA
-
D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell, MA, USA, 1997.
-
(1997)
Lazy learning
-
-
Aha, D.W.1
-
2
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
14844337488
-
The necessity of assuring quality in software measurement data
-
Chicago, IL, September, IEEE Computer Society
-
T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society.
-
(2004)
Proceedings of 10th International Software Metrics Symposium
, pp. 119-130
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
-
7
-
-
33645896241
-
Detecting noisy instances with the rule-based classification model
-
T. M. Khoshgoftaar, N. Seliya, and K. Gao. Detecting noisy instances with the rule-based classification model. Intelligent Data Analysis: An International Journal, 9(4):347-364, 2005.
-
(2005)
Intelligent Data Analysis: An International Journal
, vol.9
, Issue.4
, pp. 347-364
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
Gao, K.3
-
8
-
-
36348988873
-
Foundations of statistical natural language processing
-
MA
-
C. Manning and H. Schutze. Foundations of statistical natural language processing. MIT Press, Cambirdge, MA, 1999.
-
(1999)
MIT Press, Cambirdge
-
-
Manning, C.1
Schutze, H.2
-
9
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
11
-
-
33644969450
-
Detecting noisy instances with the ensemble filter: A study in software quality estimation
-
T. Khoshgoftaar, V. Joshi, and N. Seliya. Detecting noisy instances with the ensemble filter: a study in software quality estimation. Intl. Journal of Software Engineering, 16(1):1-24, 2006.
-
(2006)
Intl. Journal of Software Engineering
, vol.16
, Issue.1
, pp. 1-24
-
-
Khoshgoftaar, T.1
Joshi, V.2
Seliya, N.3
-
12
-
-
51949098422
-
-
Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL USA, May, Advised by T. Khoshgoftaar
-
J. Van Hulse. Data quality in data mining and machine learning. Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL USA, May 2007. Advised by T. Khoshgoftaar.
-
(2007)
Data quality in data mining and machine learning
-
-
Van Hulse, J.1
-
14
-
-
0002128687
-
Learning with rare cases and small disjuncts
-
Morgan Kaufmann
-
G. Weiss. Learning with rare cases and small disjuncts. In 12th International Conference on Machine Learning, pages 558-565. Morgan Kaufmann, 1995.
-
(1995)
12th International Conference on Machine Learning
, pp. 558-565
-
-
Weiss, G.1
-
15
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. M.Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-354, 2003.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
17
-
-
19544372918
-
Class noise vs attribute noise: A quantitative study of their impacts
-
November
-
X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4):177-210, November 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3-4
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
|