메뉴 건너뛰기




Volumn , Issue , 2008, Pages 190-195

Identifying learners robust to low quality data

Author keywords

Learning performance; Quality of data; Random forest; Software measurement data

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; ELECTRIC MEASURING INSTRUMENTS; INFORMATION USE; SOFTWARE ENGINEERING; TECHNOLOGY;

EID: 51949113080     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IRI.2008.4583028     Document Type: Conference Paper
Times cited : (37)

References (17)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Norwell, MA, USA
    • D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell, MA, USA, 1997.
    • (1997) Lazy learning
    • Aha, D.W.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 14844337488 scopus 로고    scopus 로고
    • The necessity of assuring quality in software measurement data
    • Chicago, IL, September, IEEE Computer Society
    • T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society.
    • (2004) Proceedings of 10th International Software Metrics Symposium , pp. 119-130
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 8
    • 36348988873 scopus 로고    scopus 로고
    • Foundations of statistical natural language processing
    • MA
    • C. Manning and H. Schutze. Foundations of statistical natural language processing. MIT Press, Cambirdge, MA, 1999.
    • (1999) MIT Press, Cambirdge
    • Manning, C.1    Schutze, H.2
  • 9
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 11
    • 33644969450 scopus 로고    scopus 로고
    • Detecting noisy instances with the ensemble filter: A study in software quality estimation
    • T. Khoshgoftaar, V. Joshi, and N. Seliya. Detecting noisy instances with the ensemble filter: a study in software quality estimation. Intl. Journal of Software Engineering, 16(1):1-24, 2006.
    • (2006) Intl. Journal of Software Engineering , vol.16 , Issue.1 , pp. 1-24
    • Khoshgoftaar, T.1    Joshi, V.2    Seliya, N.3
  • 12
    • 51949098422 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL USA, May, Advised by T. Khoshgoftaar
    • J. Van Hulse. Data quality in data mining and machine learning. Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL USA, May 2007. Advised by T. Khoshgoftaar.
    • (2007) Data quality in data mining and machine learning
    • Van Hulse, J.1
  • 14
    • 0002128687 scopus 로고
    • Learning with rare cases and small disjuncts
    • Morgan Kaufmann
    • G. Weiss. Learning with rare cases and small disjuncts. In 12th International Conference on Machine Learning, pages 558-565. Morgan Kaufmann, 1995.
    • (1995) 12th International Conference on Machine Learning , pp. 558-565
    • Weiss, G.1
  • 15
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M.Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-354, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 17
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs attribute noise: A quantitative study of their impacts
    • November
    • X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4):177-210, November 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3-4 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.