메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Relaxed matching kernels for robust image comparison

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; FEATURE EXTRACTION; IMAGE PROCESSING; KETONES; PATTERN RECOGNITION; STANDARDS;

EID: 51949101807     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587619     Document Type: Conference Paper
Times cited : (12)

References (25)
  • 1
    • 79957563017 scopus 로고
    • Principal warps: Thin-plate splines and the decomposition of deformations
    • F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. PAMI, 11(6):567-585, 1989.
    • (1989) PAMI , vol.11 , Issue.6 , pp. 567-585
    • Bookstein, F.L.1
  • 3
    • 51949084182 scopus 로고    scopus 로고
    • Scale and affine invariant local detectors and descriptors
    • Technical report, INRIA
    • G. Dorkó. Scale and affine invariant local detectors and descriptors. Technical report, INRIA, 2005.
    • (2005)
    • Dorkó, G.1
  • 4
    • 0344983284 scopus 로고    scopus 로고
    • A Bayesian approach to unsupervised one-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of object categories. In Proc. ICCV, 2003.
    • (2003) Proc. ICCV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 5
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1), 2005.
    • (2005) IJCV , vol.61 , Issue.1
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 6
    • 24644483228 scopus 로고    scopus 로고
    • A sparse object category model for efficient learning and exhaustive recognition
    • R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient learning and exhaustive recognition. In Proc. CVPR, 2005.
    • (2005) Proc. CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 7
    • 24644499267 scopus 로고    scopus 로고
    • Pyramid match kernels: Discriminative calssification with sets of image features
    • Technical Report MIT-CSAIL-TR-2006-020, MIT, 2006
    • K. Grauman and T. Darrell. Pyramid match kernels: Discriminative calssification with sets of image features. Technical Report MIT-CSAIL-TR-2006-020, MIT, 2006.
    • Grauman, K.1    Darrell, T.2
  • 8
    • 0344983263 scopus 로고    scopus 로고
    • Towards a mathematical theory of primal sketch and sketchability
    • C. Guo, S.-C. Zhu, and Y. N. Wu. Towards a mathematical theory of primal sketch and sketchability. In Proc. ICCV, page 1228, 2003.
    • (2003) Proc. ICCV , pp. 1228
    • Guo, C.1    Zhu, S.-C.2    Wu, Y.N.3
  • 9
    • 84862630897 scopus 로고    scopus 로고
    • Hilbertian metrics and positive definite kernels on probability measures
    • M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In Proc. AISTAT, 2005.
    • (2005) Proc. AISTAT
    • Hein, M.1    Bousquet, O.2
  • 11
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bag of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bag of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 12
    • 51949090022 scopus 로고    scopus 로고
    • Layered graph matching with graph editing
    • L. Lin, S.-C. Zhu, and Y. Wang. Layered graph matching with graph editing. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Lin, L.1    Zhu, S.-C.2    Wang, Y.3
  • 13
    • 51949101221 scopus 로고    scopus 로고
    • Proximity distribution kernels for geometric context in category recognition
    • H. Ling and S. Soatto. Proximity distribution kernels for geometric context in category recognition. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Ling, H.1    Soatto, S.2
  • 14
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2(60):91-110, 2004.
    • (2004) IJCV , vol.2 , Issue.60 , pp. 91-110
    • Lowe, D.G.1
  • 16
    • 33846249191 scopus 로고    scopus 로고
    • Sampling strategies for bag-of-features image classification
    • E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for bag-of-features image classification. In Proc. ECCV, 2006.
    • (2006) Proc. ECCV
    • Nowak, E.1    Jurie, F.2    Triggs, B.3
  • 17
    • 51949119434 scopus 로고    scopus 로고
    • Fisher kenrels on visual vocabularies for image categorizaton
    • F. Perronnin and C. Dance. Fisher kenrels on visual vocabularies for image categorizaton. In Proc. CVPR, 2006.
    • (2006) Proc. CVPR
    • Perronnin, F.1    Dance, C.2
  • 18
    • 27344438468 scopus 로고    scopus 로고
    • Graph matching and clustering using spectral partitions
    • H. Qiu and E. R. Hancock. Graph matching and clustering using spectral partitions. Pattern Recognition, 39, 2006.
    • (2006) Pattern Recognition , vol.39
    • Qiu, H.1    Hancock, E.R.2
  • 20
    • 0000632147 scopus 로고    scopus 로고
    • Agglomerative information bottleneck
    • N. Slonim and N. Tishby. Agglomerative information bottleneck. In Proc. NIPS, 1999.
    • (1999) Proc. NIPS
    • Slonim, N.1    Tishby, N.2
  • 21
    • 50649101051 scopus 로고    scopus 로고
    • Vector quantizing feature space with a regular lattice
    • T. Tuytelaars and C. Schmid. Vector quantizing feature space with a regular lattice. In Proc. ICCV, 2007.
    • (2007) Proc. ICCV
    • Tuytelaars, T.1    Schmid, C.2
  • 22
    • 51949113500 scopus 로고    scopus 로고
    • A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms. http://vision.ucla.edu/vlfeat, 2008.
    • A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms. http://vision.ucla.edu/vlfeat, 2008.
  • 23
    • 33745893242 scopus 로고    scopus 로고
    • Features for recognition: Viewpoint invariance for non-planar scenes
    • A. Vedaldi and S. Soatto. Features for recognition: Viewpoint invariance for non-planar scenes. In Proc. ICCV, 2005.
    • (2005) Proc. ICCV
    • Vedaldi, A.1    Soatto, S.2
  • 24
    • 0002409979 scopus 로고    scopus 로고
    • Unsupervised learning of models for recognition
    • M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for recognition. In Proc. ECCV, 2000.
    • (2000) Proc. ECCV
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 25
    • 51949101222 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. IJCV, 2006.
    • (2006) IJCV
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.