-
1
-
-
51949107279
-
-
http://staff.science.uva.nl/zivkovic/download.html.
-
-
-
-
2
-
-
35148820199
-
Detection and segmentation of moving objects in highly dynamic scenes
-
A. Bugeau and P. Perez. Detection and segmentation of moving objects in highly dynamic scenes. In CVPR, 2007.
-
(2007)
CVPR
-
-
Bugeau, A.1
Perez, P.2
-
3
-
-
27944447612
-
Do we know what the early visual system does?
-
M. Carandini, J. Demb, V. Mante, D. Tolhurst, Y. Dan, B. Olshausen, J. Gallant, and N. Rust. Do we know what the early visual system does? J. Neurosci., 25, 2005.
-
(2005)
J. Neurosci
, vol.25
-
-
Carandini, M.1
Demb, J.2
Mante, V.3
Tolhurst, D.4
Dan, Y.5
Olshausen, B.6
Gallant, J.7
Rust, N.8
-
4
-
-
33745169987
-
Efficient computation of the kl divergence between dynamic textures
-
Technical Report SVCL-TR-2004-02, Dept. of ECE, UCSD
-
A. B. Chan and N. Vasconcelos. Efficient computation of the kl divergence between dynamic textures. Technical Report SVCL-TR-2004-02, Dept. of ECE, UCSD, 2004.
-
(2004)
-
-
Chan, A.B.1
Vasconcelos, N.2
-
5
-
-
33745154178
-
Probabilistic kernels for the classification of auto-regressive visual processes
-
A. B. Chan and N. Vasconcelos. Probabilistic kernels for the classification of auto-regressive visual processes. In CVPR, volume 1, pages 846-851, 2005.
-
(2005)
CVPR
, vol.1
, pp. 846-851
-
-
Chan, A.B.1
Vasconcelos, N.2
-
7
-
-
0037312530
-
Dynamic textures
-
G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures. IJCV, 51(2):91-109, 2003.
-
(2003)
IJCV
, vol.51
, Issue.2
, pp. 91-109
-
-
Doretto, G.1
Chiuso, A.2
Wu, Y.N.3
Soatto, S.4
-
8
-
-
84944070277
-
Non-parametric model for background subtraction
-
A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background subtraction. In ECCV, pages 751-757, 2000.
-
(2000)
ECCV
, pp. 751-757
-
-
Elgammal, A.1
Harwood, D.2
Davis, L.3
-
9
-
-
84898943096
-
Discriminant saliency for visual recognition from cluttered scenes
-
Vancouver, Canada
-
D. Gao and N. Vasconcelos. Discriminant saliency for visual recognition from cluttered scenes. In Proc. NIPS, Vancouver, Canada, 2005.
-
(2005)
Proc. NIPS
-
-
Gao, D.1
Vasconcelos, N.2
-
10
-
-
50649108122
-
Bottom-up saliency is a discriminant process
-
D. Gao and N. Vasconcelos. Bottom-up saliency is a discriminant process. In ICCV, 2007.
-
(2007)
ICCV
-
-
Gao, D.1
Vasconcelos, N.2
-
12
-
-
0032681789
-
Statistics of Natural Images and Models
-
J. Huang and D. Mumford. Statistics of Natural Images and Models. In CVPR, pages 541-547, 1999.
-
(1999)
CVPR
, pp. 541-547
-
-
Huang, J.1
Mumford, D.2
-
13
-
-
38349034864
-
The ilab neuromorphic vision c++ toolkit: Free tools for the next generation of vision algorithms
-
Mar
-
L. Itti. The ilab neuromorphic vision c++ toolkit: Free tools for the next generation of vision algorithms. The Neuromorphic Engineer, 1(1):10, Mar 2004.
-
(2004)
The Neuromorphic Engineer
, vol.1
, Issue.1
, pp. 10
-
-
Itti, L.1
-
14
-
-
30444455292
-
A principled approach to detecting surprising events in video
-
L. Itti and P. Baldi. A principled approach to detecting surprising events in video. In CVPR, pages 631-637, 2005.
-
(2005)
CVPR
, pp. 631-637
-
-
Itti, L.1
Baldi, P.2
-
15
-
-
2442471723
-
On incremental and robust subspace learning
-
Y. Li. On incremental and robust subspace learning. Pattern Recognition, 37(7):1509-19, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.7
, pp. 1509-1519
-
-
Li, Y.1
-
17
-
-
0028424962
-
Motion tracking with an active camera
-
A. Murray, D. Basu. Motion tracking with an active camera. IEEE Trans. PAMI, 16(5):449-459, 1994.
-
(1994)
IEEE Trans. PAMI
, vol.16
, Issue.5
, pp. 449-459
-
-
Murray, A.1
Basu, D.2
-
18
-
-
0028330583
-
N4sid: Subspace algorithms for the identification of combined deterministic-stochastic systems
-
P. V. Overschee and B. D. Moor. N4sid: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30:75-93, 1994.
-
(1994)
Automatica
, vol.30
, pp. 75-93
-
-
Overschee, P.V.1
Moor, B.D.2
-
19
-
-
0037347693
-
Motion detection with nonstationary background
-
Y. Ren, C. Chua, and Y. Ho. Motion detection with nonstationary background. Machine Vision and Applications, 13(5-6):332-343, 2003.
-
(2003)
Machine Vision and Applications
, vol.13
, Issue.5-6
, pp. 332-343
-
-
Ren, Y.1
Chua, C.2
Ho, Y.3
-
20
-
-
28044439637
-
Bayesian modeling of dynamic scenes for object detection
-
Y. Sheikh and M. Shah. Bayesian modeling of dynamic scenes for object detection. IEEE PAMI, 27(11):1778-92.
-
(1778)
IEEE PAMI
, vol.27
, Issue.11
-
-
Sheikh, Y.1
Shah, M.2
-
21
-
-
84986753417
-
An approach to time series smoothing andforecasting using the EM algorithm
-
R. Shumway and D. Stoffer. An approach to time series smoothing andforecasting using the EM algorithm. Journal of Time Series Analysis, 3(4):433-467, 1982.
-
(1982)
Journal of Time Series Analysis
, vol.3
, Issue.4
, pp. 433-467
-
-
Shumway, R.1
Stoffer, D.2
-
22
-
-
0032634283
-
Adaptive background mixture models for real-time tracking
-
C. Stauffer and W. Grimson. Adaptive background mixture models for real-time tracking. In Proc. CVPR, 1999.
-
(1999)
Proc. CVPR
-
-
Stauffer, C.1
Grimson, W.2
-
23
-
-
84885021214
-
Feature selection by maximum marginal diversity
-
Vancouver, Canada
-
N. Vasconcelos. Feature selection by maximum marginal diversity. In Proc. NIPS, Vancouver, Canada, 2002.
-
(2002)
Proc. NIPS
-
-
Vasconcelos, N.1
-
24
-
-
0034244906
-
Detecting salient motion by accumulating directionally- consistent flow
-
L. Wixson. Detecting salient motion by accumulating directionally- consistent flow. IEEE PAMI, 22(8):774-780, 2000.
-
(2000)
IEEE PAMI
, vol.22
, Issue.8
, pp. 774-780
-
-
Wixson, L.1
-
25
-
-
10044240378
-
Improved adaptive Gaussian mixture model for background subtraction
-
Z. Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In ICPR, 2004.
-
(2004)
ICPR
-
-
Zivkovic, Z.1
|