-
1
-
-
51949099343
-
-
d. Ann. Probat. 9 909-936. MR0632966
-
d. Ann. Probat. 9 909-936. MR0632966
-
-
-
-
2
-
-
0035562830
-
Super-Brownian limits of voter model clusters
-
MR1872733
-
BRAMSON, M., COX, J. T. and LE GALL, J.-F. (2001). Super-Brownian limits of voter model clusters. Ann. Probab. 29 1001-1032. MR1872733
-
(2001)
Ann. Probab
, vol.29
, pp. 1001-1032
-
-
BRAMSON, M.1
COX, J.T.2
LE GALL, J.-F.3
-
4
-
-
0034336982
-
Rescaled voter models converge to super-Brownian motion
-
MR1756003
-
COX, J. T., DURRETT, R. and PERKINS, E. A. (2000). Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28 185-234. MR1756003
-
(2000)
Ann. Probab
, vol.28
, pp. 185-234
-
-
COX, J.T.1
DURRETT, R.2
PERKINS, E.A.3
-
5
-
-
0015723047
-
A model for spatial conflict
-
MR.0343950
-
CLIFFORD, P. and SUDBURRY, A. (1973). A model for spatial conflict. Biometrika 60 581-588. MR.0343950
-
(1973)
Biometrika
, vol.60
, pp. 581-588
-
-
CLIFFORD, P.1
SUDBURRY, A.2
-
6
-
-
0001816381
-
Stochastic evolution equations and related measure-valued processes
-
MR0388539
-
DAWSON, D. A. (1975). Stochastic evolution equations and related measure-valued processes. J. Multivariate Anal. 3 1-52. MR0388539
-
(1975)
J. Multivariate Anal
, vol.3
, pp. 1-52
-
-
DAWSON, D.A.1
-
7
-
-
51949095304
-
-
DAWSON, D. A. (1993). Measure-valued Markov processes. Ecole d'Été de Probabilités de Saint-Flour XXI. Lecture Notes in Math. 15411-260. Springer, Berlin. MR1242575
-
DAWSON, D. A. (1993). Measure-valued Markov processes. Ecole d'Été de Probabilités de Saint-Flour XXI. Lecture Notes in Math. 15411-260. Springer, Berlin. MR1242575
-
-
-
-
8
-
-
0033175322
-
-
DELMAS, J.-F. (1999). Some properties of the range of super-Brownian motion. Probab. Theory Related Fields 114 505-547. Springer, Berlin. MR1709279
-
DELMAS, J.-F. (1999). Some properties of the range of super-Brownian motion. Probab. Theory Related Fields 114 505-547. Springer, Berlin. MR1709279
-
-
-
-
9
-
-
0000441817
-
Super-Brownian motion: Path properties and hitting probabilities
-
MR1012498
-
DAWSON, D., ISCOE, I. and PERKINS, E. A. (1989). Super-Brownian motion: Path properties and hitting probabilities. Probab. Theory Related Fields 83 135-205. MR1012498
-
(1989)
Probab. Theory Related Fields
, vol.83
, pp. 135-205
-
-
DAWSON, D.1
ISCOE, I.2
PERKINS, E.A.3
-
10
-
-
0000550994
-
Ergodic theorems for weakly interacting infinite systems and the voter model
-
MR0402985
-
HOLLEY, R. A. and LIGGETT, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3 643-663. MR0402985
-
(1975)
Ann. Probab
, vol.3
, pp. 643-663
-
-
HOLLEY, R.A.1
LIGGETT, T.M.2
-
11
-
-
51949086904
-
-
LAWLER, G. F. (1991). Intersections of Random Walks. Birkhauser, Boston. MR1117680
-
LAWLER, G. F. (1991). Intersections of Random Walks. Birkhauser, Boston. MR1117680
-
-
-
-
12
-
-
51949096965
-
-
LE GALL, J.-F. (1997). Coalescing random walks, the voter model and super-Brownian motion. Personal communication.
-
LE GALL, J.-F. (1997). Coalescing random walks, the voter model and super-Brownian motion. Personal communication.
-
-
-
-
13
-
-
51949102660
-
-
LE GALL, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhäuser, Boston. MR1714707
-
LE GALL, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhäuser, Boston. MR1714707
-
-
-
-
14
-
-
51949103226
-
-
LE GALL, J.-F. (1994). A lemma on super-Brownian motion with some applications. In Festschrift in Honor of E. B. Dynkin (M. Friedlin, ed.) 237-251. Birkhäuser, Boston. MR1311723
-
LE GALL, J.-F. (1994). A lemma on super-Brownian motion with some applications. In Festschrift in Honor of E. B. Dynkin (M. Friedlin, ed.) 237-251. Birkhäuser, Boston. MR1311723
-
-
-
-
15
-
-
51949101869
-
-
LE GALL, J.-F. and PERKINS, E. A. (1995). The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23 1719-1747. MR1379165
-
LE GALL, J.-F. and PERKINS, E. A. (1995). The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23 1719-1747. MR1379165
-
-
-
-
16
-
-
51949087643
-
-
LIGGETT, T. M. (1985). Interacting Particle Systems. Springer, New York. MR0776231
-
LIGGETT, T. M. (1985). Interacting Particle Systems. Springer, New York. MR0776231
-
-
-
-
17
-
-
51949084659
-
-
LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces. Springer, New York. MR1102015
-
LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces. Springer, New York. MR1102015
-
-
-
-
18
-
-
51949110850
-
-
PERKINS, E. A. (1999). Dawson-Watanabe superprocesses and measure-valued diffusions. Lectures on Probability Theory and Statistics. Ecole d'Été de Probabilités de Saint-Flour XXIX. Lecture Notes in Math. 1781 125-324. Springer, Berlin. MR1915445
-
PERKINS, E. A. (1999). Dawson-Watanabe superprocesses and measure-valued diffusions. Lectures on Probability Theory and Statistics. Ecole d'Été de Probabilités de Saint-Flour XXIX. Lecture Notes in Math. 1781 125-324. Springer, Berlin. MR1915445
-
-
-
-
19
-
-
0009239458
-
The Hausdorff measure of the closed support of super-Brownian motion
-
MR1001027
-
PERKINS, E. A. (1989). The Hausdorff measure of the closed support of super-Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 25 205-224. MR1001027
-
(1989)
Ann. Inst. H. Poincaré Probab. Statist
, vol.25
, pp. 205-224
-
-
PERKINS, E.A.1
-
20
-
-
0001110725
-
A limit theorem for patch sizes in a selectively-neutral migration model
-
MR0540786
-
SAWYER, S. (1979). A limit theorem for patch sizes in a selectively-neutral migration model. J. Appl. Probab. 16 482-495. MR0540786
-
(1979)
J. Appl. Probab
, vol.16
, pp. 482-495
-
-
SAWYER, S.1
-
22
-
-
0001686614
-
A limit theorem of branching processes and continuous state branching
-
MR0237008
-
WATANABE, S. (1968). A limit theorem of branching processes and continuous state branching. J. Math. Kyoto Univ. 8 141-167. MR0237008
-
(1968)
J. Math. Kyoto Univ
, vol.8
, pp. 141-167
-
-
WATANABE, S.1
|