메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Graph-shifts: Natural image labeling by dynamic hierarchical computing

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; DIFFRACTIVE OPTICAL ELEMENTS; FEATURE EXTRACTION; GRAPH THEORY; IMAGE PROCESSING; IMAGE RECONSTRUCTION; IMAGE RETRIEVAL; LABELING; MODEL BUILDINGS; PATTERN RECOGNITION;

EID: 51949093468     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587490     Document Type: Conference Paper
Times cited : (18)

References (23)
  • 1
    • 34250087462 scopus 로고    scopus 로고
    • P. Anandan. A Computational Framework and an Algorithm for the Measurement of Visual Motion. Intl. J. of Computer Vision, 2(3):283-310, 1989.
    • P. Anandan. A Computational Framework and an Algorithm for the Measurement of Visual Motion. Intl. J. of Computer Vision, 2(3):283-310, 1989.
  • 2
    • 0042440879 scopus 로고    scopus 로고
    • The Effects of Segmentation and Feature Choice in a Translational Model of Object Recognition
    • K. Barnard, P. Duygulu, R. Guru, P. Gabbur, and D. Forsyth. The Effects of Segmentation and Feature Choice in a Translational Model of Object Recognition. In Proc. of CVPR, 2003.
    • (2003) Proc. of CVPR
    • Barnard, K.1    Duygulu, P.2    Guru, R.3    Gabbur, P.4    Forsyth, D.5
  • 3
    • 0035509961 scopus 로고    scopus 로고
    • Fast Approximate Energy Minimization via Graph Cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. on PAMI, 23(11):1222-1239, 2001.
    • (2001) IEEE Trans. on PAMI , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 4
    • 0036684357 scopus 로고    scopus 로고
    • Blobworld: Image Segmentation using Expectation-Maximization and Its Application to Image Querying
    • C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image Segmentation using Expectation-Maximization and Its Application to Image Querying. IEEE Trans. on PAMI, 24(8):1026-1038, 2002.
    • (2002) IEEE Trans. on PAMI , vol.24 , Issue.8 , pp. 1026-1038
    • Carson, C.1    Belongie, S.2    Greenspan, H.3    Malik, J.4
  • 5
    • 34548403887 scopus 로고    scopus 로고
    • J. J. Corso, Z. Tu, A. Yuille, and A. W. Toga. Segmentation of Sub-Cortical Structures by the Graph-Shifts Algorithm. In N. Karssemeijer and B. Lelieveldt, editors, Proc. of IPMI, pages 183-197, 2007.
    • J. J. Corso, Z. Tu, A. Yuille, and A. W. Toga. Segmentation of Sub-Cortical Structures by the Graph-Shifts Algorithm. In N. Karssemeijer and B. Lelieveldt, editors, Proc. of IPMI, pages 183-197, 2007.
  • 6
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian Hierarchical Model for Learning Natural Scene Categories
    • L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. J. of Comp. and Sys. Sci., 55(1):119-139, 1997.
    • (1997) J. of Comp. and Sys. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 0003338630 scopus 로고    scopus 로고
    • A Revolution: Belief Propagation in Graphs with Cycles
    • B. J. Frey and D. MacKay. A Revolution: Belief Propagation in Graphs with Cycles. In Proc. of NIPS, 1997.
    • (1997) Proc. of NIPS
    • Frey, B.J.1    MacKay, D.2
  • 10
    • 0003660631 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Technical report, Dept. of Statistics, Stanford University
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Technical report, Dept. of Statistics, Stanford University, 1998.
    • (1998)
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 0344120262 scopus 로고    scopus 로고
    • Applying the Information Bottleneck Principle to Unsupervised Clustering of Discrete and Continuous Image Representations
    • S. Gordon, H. Greenspan, and J. Goldberger. Applying the Information Bottleneck Principle to Unsupervised Clustering of Discrete and Continuous Image Representations. In Proc. of ICCV, 2003.
    • (2003) Proc. of ICCV
    • Gordon, S.1    Greenspan, H.2    Goldberger, J.3
  • 12
    • 33750129298 scopus 로고    scopus 로고
    • Convergent Tree-reweighted Message Passing for Energy Minimization
    • V. Kolmogorov. Convergent Tree-reweighted Message Passing for Energy Minimization. IEEE Trans. on PAMI, 28(10):1568-1583, 2006.
    • (2006) IEEE Trans. on PAMI , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 13
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification
    • S. Kumar and M. Hebert. Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification. In Proc. of ICCV, 2003.
    • (2003) Proc. of ICCV
    • Kumar, S.1    Hebert, M.2
  • 14
    • 0141836773 scopus 로고    scopus 로고
    • Automatic linguistic indexing of pictures by a statistical modeling approach
    • J. Li and J. Z. Wang. Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. on PAMI, 25(9):1075-1088, 2003.
    • (2003) IEEE Trans. on PAMI , vol.25 , Issue.9 , pp. 1075-1088
    • Li, J.1    Wang, J.Z.2
  • 15
    • 85118286272 scopus 로고    scopus 로고
    • L. Lu, K. Toyama, and G. D. Hager. A Two Level Approach for Scene Recognition. In Proc. of CVPR, 1, pages 688-695, 2005.
    • L. Lu, K. Toyama, and G. D. Hager. A Two Level Approach for Scene Recognition. In Proc. of CVPR, volume 1, pages 688-695, 2005.
  • 16
    • 0029678894 scopus 로고    scopus 로고
    • Improved Use of Continuous Attributes in C4.5
    • J. R. Quinlan. Improved Use of Continuous Attributes in C4.5. J. of Art. Intel. Res., 4:77-90, 1996.
    • (1996) J. of Art. Intel. Res , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 17
    • 33845423382 scopus 로고    scopus 로고
    • TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation. In Proc. of ECCV, 2006.
    • (2006) Proc. of ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 19
    • 0344983321 scopus 로고    scopus 로고
    • Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters
    • M. Tappen and W. T. Freeman. Comparison of Graph Cuts with Belief Propagation for Stereo, using Identical MRF Parameters. In Proc. of ICCV, pages 900-907, 2003.
    • (2003) Proc. of ICCV , pp. 900-907
    • Tappen, M.1    Freeman, W.T.2
  • 20
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering
    • Z. Tu. Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering. In Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Tu, Z.1
  • 21
    • 51949119486 scopus 로고    scopus 로고
    • Auto-context and its application for high-level vision tasks
    • to appear
    • Z. Tu. Auto-context and its application for high-level vision tasks. In Proc. of CVPR, 2008. (to appear).
    • (2008) Proc. of CVPR
    • Tu, Z.1
  • 22
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proc. of CVPR, 2001.
    • (2001) Proc. of CVPR
    • Viola, P.1    Jones, M.2
  • 23
    • 34548709821 scopus 로고    scopus 로고
    • Introduction to a Large Scale General Purpose Ground Truth Dataset: Methodology, Annotation Tool, and Benchmarks
    • Z. Yao, X. Yang, and S. C. Zhu. Introduction to a Large Scale General Purpose Ground Truth Dataset: Methodology, Annotation Tool, and Benchmarks. In Proc. of EMMCVPR, 2007.
    • (2007) Proc. of EMMCVPR
    • Yao, Z.1    Yang, X.2    Zhu, S.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.