메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Classification via semi-Riemannian spaces

Author keywords

[No Author keywords available]

Indexed keywords

CLASS STRUCTURES; DISCRETE FUNCTIONS; FEATURE SPACES; GEOMETRIC FRAMEWORKS; MACHINE-LEARNING; METRIC TENSORS; NOVEL ALGORITHMS; RECOGNITION AND CLASSIFICATION; RIEMANNIAN GEOMETRY; RIEMANNIAN MANIFOLDS; RIEMANNIAN METRICS; RIEMANNIAN SPACES; SINGULAR CASE; SUBSPACE LEARNING;

EID: 51949090817     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587346     Document Type: Conference Paper
Times cited : (13)

References (36)
  • 3
    • 35148813570 scopus 로고    scopus 로고
    • Learning a spatially smooth subspace for face recognition
    • D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Learning a spatially smooth subspace for face recognition. In CVPR, 2007.
    • (2007) CVPR
    • Cai, D.1    He, X.2    Hu, Y.3    Han, J.4    Huang, T.5
  • 4
    • 50649123949 scopus 로고    scopus 로고
    • Spectral regression for efficient regularized subspace learning
    • D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Spectral regression for efficient regularized subspace learning. In ICCV, 2007.
    • (2007) ICCV
    • Cai, D.1    He, X.2    Hu, Y.3    Han, J.4    Huang, T.5
  • 5
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 33:1713-1726, 2000.
    • (2000) Pattern Recognition , vol.33 , pp. 1713-1726
    • Chen, L.1    Liao, H.2    Ko, M.3    Lin, J.4    Yu, G.5
  • 7
    • 0001474381 scopus 로고
    • The statistical utilization of multiple measurements
    • R. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376-386, 1938.
    • (1938) Annals of Eugenics , vol.8 , pp. 376-386
    • Fisher, R.1
  • 8
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • J. Friedman. Regularized discriminant analysis. American Statistical Association, 84(405):165-175, 1989.
    • (1989) American Statistical Association , vol.84 , Issue.405 , pp. 165-175
    • Friedman, J.1
  • 13
    • 3242707002 scopus 로고    scopus 로고
    • Generalizing discriminant analysis using the generalized singular value decomposition
    • P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(8):995-1006, 2004.
    • (2004) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.26 , Issue.8 , pp. 995-1006
    • Howland, P.1    Park, H.2
  • 14
    • 12244295230 scopus 로고    scopus 로고
    • Efficient robust feature extraction by maximum margin criterion
    • H. Li, T. Jiang, and K. Zhang. Efficient robust feature extraction by maximum margin criterion. In NIPS, 2003.
    • (2003) NIPS
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 15
    • 10044220627 scopus 로고    scopus 로고
    • Kernel scatter-difference based discriminant analysis for face recognition
    • Q. Liu, X. Tang, H. Lu, and S. Ma. Kernel scatter-difference based discriminant analysis for face recognition. In ICPR, 2004.
    • (2004) ICPR
    • Liu, Q.1    Tang, X.2    Lu, H.3    Ma, S.4
  • 16
    • 33746916014 scopus 로고    scopus 로고
    • Face recognition using kernel scatter-difference-based discriminant analysis
    • Q. Liu, X. Tang, H. Lu, and S. Ma. Face recognition using kernel scatter-difference-based discriminant analysis. IEEE Trans. on Neural Networks, 17:1081-1085, 2006.
    • (2006) IEEE Trans. on Neural Networks , vol.17 , pp. 1081-1085
    • Liu, Q.1    Tang, X.2    Lu, H.3    Ma, S.4
  • 19
    • 0040777896 scopus 로고
    • Discretized laplacian smoothing by Fourier methods
    • F. O'Sullivan. Discretized laplacian smoothing by Fourier methods. JASA, 86(415):634-642, 1991.
    • (1991) JASA , vol.86 , Issue.415 , pp. 634-642
    • O'Sullivan, F.1
  • 20
    • 33745164328 scopus 로고    scopus 로고
    • Overview of the face recognition grand challenge
    • P. Philips, P. Flynn, T. Scruggs, and K. Bowyer. Overview of the face recognition grand challenge. CVPR, 2005.
    • (2005) CVPR
    • Philips, P.1    Flynn, P.2    Scruggs, T.3    Bowyer, K.4
  • 21
    • 33745901082 scopus 로고    scopus 로고
    • Face recognition by stepwise nonparameteric margin maximum criterion
    • X. Qiu and L. Wu. Face recognition by stepwise nonparameteric margin maximum criterion. In ICCV, 2005.
    • (2005) ICCV
    • Qiu, X.1    Wu, L.2
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 23
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 24
    • 35148826924 scopus 로고    scopus 로고
    • Feature extraction by maximizing the average neighborhood margin
    • F.Wang and C. Zhang. Feature extraction by maximizing the average neighborhood margin. In CVPR, 2007.
    • (2007) CVPR
    • Wang, F.1    Zhang, C.2
  • 25
    • 35148823228 scopus 로고    scopus 로고
    • Trace ratio vs. ratio trace for dimensionality reduction
    • H.Wang, S. Yan, D. Xu, X. Tang, and T. Huang. Trace ratio vs. ratio trace for dimensionality reduction. In CVPR, 2007.
    • (2007) CVPR
    • Wang, H.1    Yan, S.2    Xu, D.3    Tang, X.4    Huang, T.5
  • 26
    • 34948902826 scopus 로고    scopus 로고
    • Local and weighted maximum margin discriminant analysis
    • H. Wang, W. Zheng, Z. Hu, and S. Chen. Local and weighted maximum margin discriminant analysis. In CVPR, 2007.
    • (2007) CVPR
    • Wang, H.1    Zheng, W.2    Hu, Z.3    Chen, S.4
  • 30
    • 33744962383 scopus 로고    scopus 로고
    • Random sampling for subspace face recognition
    • X. Wang and X. Tang. Random sampling for subspace face recognition. International Journal of Computer Vision, 70(1):91-104, 2006.
    • (2006) International Journal of Computer Vision , vol.70 , Issue.1 , pp. 91-104
    • Wang, X.1    Tang, X.2
  • 32
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition
    • J. Yang, A. Frangi, J. Yang, D. Zhang, , and Z. Jin. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(2):230-244, 2005.
    • (2005) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.27 , Issue.2 , pp. 230-244
    • Yang, J.1    Frangi, A.2    Yang, J.3    Zhang, D.4    Jin, Z.5
  • 34
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data?with application to face recognition
    • H. Yu and J. Yang. A direct LDA algorithm for high-dimensional data?with application to face recognition. Pattern Recognition, 34(10):2067-2070, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 35
    • 50649122333 scopus 로고    scopus 로고
    • Laplacian PCA and its applications
    • D. Zhao, Z. Lin, and X. Tang. Laplacian PCA and its applications. In ICCV, 2007.
    • (2007) ICCV
    • Zhao, D.1    Lin, Z.2    Tang, X.3
  • 36
    • 34948856432 scopus 로고    scopus 로고
    • Linear Laplacian discrimination for feature extraction
    • D. Zhao, Z. Lin, R. Xiao, and X. Tang. Linear Laplacian discrimination for feature extraction. In CVPR, 2007.
    • (2007) CVPR
    • Zhao, D.1    Lin, Z.2    Xiao, R.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.