-
1
-
-
33947167478
-
Face decription with local binary patterns: Application to face recognition
-
T. Ahonen, A. Hadid, and M. Pietikäinen. Face decription with local binary patterns: application to face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(12):2037-2041, 2006.
-
(2006)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.12
, pp. 2037-2041
-
-
Ahonen, T.1
Hadid, A.2
Pietikäinen, M.3
-
2
-
-
0031185845
-
Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
-
P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(1):711-720, 1997.
-
(1997)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.1
, pp. 711-720
-
-
Belhumeur, P.1
Hespanha, J.2
Kriegman, D.3
-
3
-
-
35148813570
-
Learning a spatially smooth subspace for face recognition
-
D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Learning a spatially smooth subspace for face recognition. In CVPR, 2007.
-
(2007)
CVPR
-
-
Cai, D.1
He, X.2
Hu, Y.3
Han, J.4
Huang, T.5
-
4
-
-
50649123949
-
Spectral regression for efficient regularized subspace learning
-
D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Spectral regression for efficient regularized subspace learning. In ICCV, 2007.
-
(2007)
ICCV
-
-
Cai, D.1
He, X.2
Hu, Y.3
Han, J.4
Huang, T.5
-
5
-
-
0034300875
-
A new LDA-based face recognition system which can solve the small sample size problem
-
L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 33:1713-1726, 2000.
-
(2000)
Pattern Recognition
, vol.33
, pp. 1713-1726
-
-
Chen, L.1
Liao, H.2
Ko, M.3
Lin, J.4
Yu, G.5
-
7
-
-
0001474381
-
The statistical utilization of multiple measurements
-
R. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376-386, 1938.
-
(1938)
Annals of Eugenics
, vol.8
, pp. 376-386
-
-
Fisher, R.1
-
8
-
-
84887916087
-
Regularized discriminant analysis
-
J. Friedman. Regularized discriminant analysis. American Statistical Association, 84(405):165-175, 1989.
-
(1989)
American Statistical Association
, vol.84
, Issue.405
, pp. 165-175
-
-
Friedman, J.1
-
9
-
-
21844486429
-
Penalized discriminant analysis
-
T. Hastie, A. Buja, and R. Tibshirani. Penalized discriminant analysis. The Annals of Statistics, 23(1):73-102, 1995.
-
(1995)
The Annals of Statistics
, vol.23
, Issue.1
, pp. 73-102
-
-
Hastie, T.1
Buja, A.2
Tibshirani, R.3
-
11
-
-
15044358511
-
Face recognition using Laplacianfaces
-
X. He, S. Yan, P. N. Y.X. Hu, and H. Zhang. Face recognition using Laplacianfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(3):328-340, 2005.
-
(2005)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.3
, pp. 328-340
-
-
He, X.1
Yan, S.2
Hu, P.N.Y.X.3
Zhang, H.4
-
13
-
-
3242707002
-
Generalizing discriminant analysis using the generalized singular value decomposition
-
P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(8):995-1006, 2004.
-
(2004)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.26
, Issue.8
, pp. 995-1006
-
-
Howland, P.1
Park, H.2
-
14
-
-
12244295230
-
Efficient robust feature extraction by maximum margin criterion
-
H. Li, T. Jiang, and K. Zhang. Efficient robust feature extraction by maximum margin criterion. In NIPS, 2003.
-
(2003)
NIPS
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
15
-
-
10044220627
-
Kernel scatter-difference based discriminant analysis for face recognition
-
Q. Liu, X. Tang, H. Lu, and S. Ma. Kernel scatter-difference based discriminant analysis for face recognition. In ICPR, 2004.
-
(2004)
ICPR
-
-
Liu, Q.1
Tang, X.2
Lu, H.3
Ma, S.4
-
16
-
-
33746916014
-
Face recognition using kernel scatter-difference-based discriminant analysis
-
Q. Liu, X. Tang, H. Lu, and S. Ma. Face recognition using kernel scatter-difference-based discriminant analysis. IEEE Trans. on Neural Networks, 17:1081-1085, 2006.
-
(2006)
IEEE Trans. on Neural Networks
, vol.17
, pp. 1081-1085
-
-
Liu, Q.1
Tang, X.2
Lu, H.3
Ma, S.4
-
19
-
-
0040777896
-
Discretized laplacian smoothing by Fourier methods
-
F. O'Sullivan. Discretized laplacian smoothing by Fourier methods. JASA, 86(415):634-642, 1991.
-
(1991)
JASA
, vol.86
, Issue.415
, pp. 634-642
-
-
O'Sullivan, F.1
-
21
-
-
33745901082
-
Face recognition by stepwise nonparameteric margin maximum criterion
-
X. Qiu and L. Wu. Face recognition by stepwise nonparameteric margin maximum criterion. In ICCV, 2005.
-
(2005)
ICCV
-
-
Qiu, X.1
Wu, L.2
-
22
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
23
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.1
Silva, V.2
Langford, J.3
-
24
-
-
35148826924
-
Feature extraction by maximizing the average neighborhood margin
-
F.Wang and C. Zhang. Feature extraction by maximizing the average neighborhood margin. In CVPR, 2007.
-
(2007)
CVPR
-
-
Wang, F.1
Zhang, C.2
-
25
-
-
35148823228
-
Trace ratio vs. ratio trace for dimensionality reduction
-
H.Wang, S. Yan, D. Xu, X. Tang, and T. Huang. Trace ratio vs. ratio trace for dimensionality reduction. In CVPR, 2007.
-
(2007)
CVPR
-
-
Wang, H.1
Yan, S.2
Xu, D.3
Tang, X.4
Huang, T.5
-
26
-
-
34948902826
-
Local and weighted maximum margin discriminant analysis
-
H. Wang, W. Zheng, Z. Hu, and S. Chen. Local and weighted maximum margin discriminant analysis. In CVPR, 2007.
-
(2007)
CVPR
-
-
Wang, H.1
Zheng, W.2
Hu, Z.3
Chen, S.4
-
31
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(1):40-51, 2007.
-
(2007)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.4
Yang, Q.5
Lin, S.6
-
32
-
-
14544297033
-
KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition
-
J. Yang, A. Frangi, J. Yang, D. Zhang, , and Z. Jin. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(2):230-244, 2005.
-
(2005)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.2
, pp. 230-244
-
-
Yang, J.1
Frangi, A.2
Yang, J.3
Zhang, D.4
Jin, Z.5
-
34
-
-
0001765951
-
A direct LDA algorithm for high-dimensional data?with application to face recognition
-
H. Yu and J. Yang. A direct LDA algorithm for high-dimensional data?with application to face recognition. Pattern Recognition, 34(10):2067-2070, 2001.
-
(2001)
Pattern Recognition
, vol.34
, Issue.10
, pp. 2067-2070
-
-
Yu, H.1
Yang, J.2
-
35
-
-
50649122333
-
Laplacian PCA and its applications
-
D. Zhao, Z. Lin, and X. Tang. Laplacian PCA and its applications. In ICCV, 2007.
-
(2007)
ICCV
-
-
Zhao, D.1
Lin, Z.2
Tang, X.3
-
36
-
-
34948856432
-
Linear Laplacian discrimination for feature extraction
-
D. Zhao, Z. Lin, R. Xiao, and X. Tang. Linear Laplacian discrimination for feature extraction. In CVPR, 2007.
-
(2007)
CVPR
-
-
Zhao, D.1
Lin, Z.2
Xiao, R.3
Tang, X.4
|