메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Clustering and dimensionality reduction on Riemannian manifolds

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; COMPUTER VISION; FEATURE EXTRACTION; FLOW OF SOLIDS; IMAGE PROCESSING; LEARNING ALGORITHMS; PATTERN RECOGNITION; TENSORS;

EID: 51949089680     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587422     Document Type: Conference Paper
Times cited : (117)

References (20)
  • 1
    • 33746724078 scopus 로고    scopus 로고
    • Log-Euclidean metrics for fast and simple calculus on diffusion tensors
    • V. Arsigny et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Mag. Reson. Med., 56:411-421, 2006.
    • (2006) Mag. Reson. Med , vol.56 , pp. 411-421
    • Arsigny, V.1
  • 2
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, pg 585-591, 2002.
    • (2002) NIPS , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 14844345893 scopus 로고    scopus 로고
    • Motion competition: A variational framework for piecewise parametric motion segmentation
    • D. Cremers et al. Motion competition: A variational framework for piecewise parametric motion segmentation. IJCV, 62:249-265, 2005.
    • (2005) IJCV , vol.62 , pp. 249-265
    • Cremers, D.1
  • 5
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • D. Donoho et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. PNAS, 100:5591-5596, 2003.
    • (2003) PNAS , vol.100 , pp. 5591-5596
    • Donoho, D.1
  • 7
    • 33750164640 scopus 로고    scopus 로고
    • Riemannian geometry for the statistical analysis of diffusion tensor data
    • P. T. Fletcher et al. Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing, 87(2):250-262, 2007.
    • (2007) Signal Processing , vol.87 , Issue.2 , pp. 250-262
    • Fletcher, P.T.1
  • 8
    • 34948906262 scopus 로고    scopus 로고
    • Segmenting motions of different types by unsupervised manifold clustering
    • A. Goh and R. Vidal. Segmenting motions of different types by unsupervised manifold clustering. In CVPR, 2007.
    • (2007) CVPR
    • Goh, A.1    Vidal, R.2
  • 9
    • 38149120627 scopus 로고    scopus 로고
    • Geodesic-loxodromes for diffusion tensor interpolation and difference measurement
    • G. Kindlmann et al. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. In MICCAI, pg 1-9, 2007.
    • (2007) MICCAI , pp. 1-9
    • Kindlmann, G.1
  • 10
    • 50649091940 scopus 로고    scopus 로고
    • Finsler tractography for white matter connectivity analysis of the cingulum bundle
    • J. Melonakos et al. Finsler tractography for white matter connectivity analysis of the cingulum bundle. In MICCAI, pg 36-43, 2007.
    • (2007) MICCAI , pp. 36-43
    • Melonakos, J.1
  • 11
    • 29344452228 scopus 로고    scopus 로고
    • A Riemannian framework for tensor computing
    • X. Pennec, P. Fillard, and N. Ayache. A Riemannian framework for tensor computing. IJCV, 66(1):41-46, 2006.
    • (2006) IJCV , vol.66 , Issue.1 , pp. 41-46
    • Pennec, X.1    Fillard, P.2    Ayache, N.3
  • 12
    • 84898934594 scopus 로고    scopus 로고
    • Grouping and dimensionality reduction by locally linear embedding
    • M. Polito and P. Perona. Grouping and dimensionality reduction by locally linear embedding. In NIPS, pg 1255-1262, 2002.
    • (2002) NIPS , pp. 1255-1262
    • Polito, M.1    Perona, P.2
  • 13
    • 35148835247 scopus 로고    scopus 로고
    • Segmenting images on the tensor manifold
    • Y. Rathi et al. Segmenting images on the tensor manifold. In CVPR, 2007.
    • (2007) CVPR
    • Rathi, Y.1
  • 14
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • S. Roweis and L. Saul. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. JMLR, 4:119-155, 2003.
    • (2003) JMLR , vol.4 , pp. 119-155
    • Roweis, S.1    Saul, L.2
  • 15
  • 16
    • 33845570918 scopus 로고    scopus 로고
    • Nonlinear mean shift for clustering over analytic manifolds
    • R. Subbarao and P. Meer. Nonlinear mean shift for clustering over analytic manifolds. In CVPR, pg 1168-1175, 2006.
    • (2006) CVPR , pp. 1168-1175
    • Subbarao, R.1    Meer, P.2
  • 17
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum et al. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1
  • 18
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. Tipping et al. Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2):443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1
  • 19
    • 30144438432 scopus 로고    scopus 로고
    • Generalized Principal Component Analysis (GPCA)
    • R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component Analysis (GPCA). PAMI, 27(12):1-15, 2005.
    • (2005) PAMI , vol.27 , Issue.12 , pp. 1-15
    • Vidal, R.1    Ma, Y.2    Sastry, S.3
  • 20
    • 5044237236 scopus 로고    scopus 로고
    • An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation
    • Z. Wang et al. An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In CVPR, 2004.
    • (2004) CVPR
    • Wang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.