메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Normalized tree partitioning for image segmentation

Author keywords

[No Author keywords available]

Indexed keywords

AGGLOMERATION; ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; COMBINATORIAL MATHEMATICS; COMPUTATIONAL GEOMETRY; COMPUTATIONAL METHODS; COMPUTER VISION; DIGITAL IMAGE STORAGE; FEATURE EXTRACTION; FLOW OF SOLIDS; GRAPH THEORY; IMAGE PROCESSING; IMAGE SEGMENTATION; PATTERN RECOGNITION;

EID: 51949087231     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587454     Document Type: Conference Paper
Times cited : (70)

References (17)
  • 2
    • 0032201716 scopus 로고    scopus 로고
    • Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions
    • S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.Wu. An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions. J. ACM, 45(6):891-923, 1998.
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    An, A.Y.W.5
  • 3
    • 84933530882 scopus 로고
    • Approximating Discrete Probability Distributions with Dependence Trees
    • May
    • C. K. Chow and C. N. Liu. Approximating Discrete Probability Distributions with Dependence Trees. IEEE Trans. Information Theory, 14(3):462-467, May 1968.
    • (1968) IEEE Trans. Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 4
    • 0036565814 scopus 로고    scopus 로고
    • Mean Shift: A Robust Approach Toward Feature Space Analysis
    • D. Comaniciu and P. Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603-619, 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 6
    • 84949938398 scopus 로고    scopus 로고
    • Yet Another Survey on Image Segmentation: Region and Boundary Information Integration
    • J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí. Yet Another Survey on Image Segmentation: Region and Boundary Information Integration. In ECCV (3), pages 408-422, 2002.
    • (2002) ECCV , vol.3 , pp. 408-422
    • Freixenet, J.1    Muñoz, X.2    Raba, D.3    Martí, J.4    Cufí, X.5
  • 7
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by Passing Messages Between Data Points
    • B. Frey and D. Dueck. Clustering by Passing Messages Between Data Points. Science, 315(5814):972-976, 2007.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.1    Dueck, D.2
  • 9
    • 0034850577 scopus 로고    scopus 로고
    • A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics
    • D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In ICCV, pages 416-425, 2001.
    • (2001) ICCV , pp. 416-425
    • Martin, D.R.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 10
    • 31844440880 scopus 로고    scopus 로고
    • Comparing Clusterings: An Axiomatic View
    • M. Meila. Comparing Clusterings: an Axiomatic View. In ICML, pages 577-584, 2005.
    • (2005) ICML , pp. 577-584
    • Meila, M.1
  • 13
    • 0019999522 scopus 로고
    • Graph Theoretical Clustering Based on Limited Neighborhood Sets
    • R. Urquhart. Graph Theoretical Clustering Based on Limited Neighborhood Sets. Pattern Recognition, 15(3):173-187, 1982.
    • (1982) Pattern Recognition , vol.15 , Issue.3 , pp. 173-187
    • Urquhart, R.1
  • 14
    • 0344551898 scopus 로고    scopus 로고
    • Multiclass Spectral Clustering
    • S. X. Yu and J. Shi. Multiclass Spectral Clustering. In ICCV, pages 313-319, 2003.
    • (2003) ICCV , pp. 313-319
    • Yu, S.X.1    Shi, J.2
  • 15
    • 0014976008 scopus 로고    scopus 로고
    • Graph Theoretic Methods for Detecting and Describing Gestalt Clusters
    • C. Zahn. Graph Theoretic Methods for Detecting and Describing Gestalt Clusters. IEEE Trans. Computers, 20.
    • IEEE Trans. Computers , pp. 20
    • Zahn, C.1
  • 16
    • 33644783522 scopus 로고    scopus 로고
    • Self-Tuning Spectral Clustering
    • L. Zelnik-Manor and P. Perona. Self-Tuning Spectral Clustering. In NIPS, 2004.
    • (2004) NIPS
    • Zelnik-Manor, L.1    Perona, P.2
  • 17
    • 84864027458 scopus 로고    scopus 로고
    • Learning with Hypergraphs: Clustering, Classification, and Embedding
    • D. Zhou, J. Huang, and B. Schölkopf. Learning with Hypergraphs: Clustering, Classification, and Embedding. In NIPS, pages 1601-1608, 2006.
    • (2006) NIPS , pp. 1601-1608
    • Zhou, D.1    Huang, J.2    Schölkopf, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.