메뉴 건너뛰기




Volumn , Issue , 2007, Pages 692-696

Feature selection using double parallel feedforward neural networks and particle swarm optimization

Author keywords

[No Author keywords available]

Indexed keywords

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK (DPFNN); SINGLE-LAYER FEEDFORWARD NEURAL NETWORK (SFNN);

EID: 51849110463     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2007.4424538     Document Type: Conference Paper
Times cited : (11)

References (24)
  • 1
    • 0029256585 scopus 로고
    • Determining input features for multilayer perceptrons
    • L. M. Belue and K. W. Bauer, "Determining input features for multilayer perceptrons," Neurocomputing, vol. 7, pp. 111-121, 1995.
    • (1995) Neurocomputing , vol.7 , pp. 111-121
    • Belue, L.M.1    Bauer, K.W.2
  • 2
    • 0342546478 scopus 로고    scopus 로고
    • Feature screening using signal-to-noise ratios
    • K. W. Bauer, S. G. Alsing, and K. A. Greene, "Feature screening using signal-to-noise ratios," Neurocomputing, vol. 31, pp. 29-44, 2000.
    • (2000) Neurocomputing , vol.31 , pp. 29-44
    • Bauer, K.W.1    Alsing, S.G.2    Greene, K.A.3
  • 3
    • 0031140388 scopus 로고    scopus 로고
    • Neural-network feature selector
    • R. Setiono and H. Liu, "Neural-network feature selector," IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 654-662, 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 654-662
    • Setiono, R.1    Liu, H.2
  • 4
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural net-works
    • A. Verikas and M. Bacauskiene, "Feature selection with neural net-works," Pattern Recognition Letters, vol. 23, pp. 1323-1335, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 7
    • 0028336556 scopus 로고
    • Genetic evolution of the topology and weight distribution of neural networks
    • V. Maniezzo, "Genetic evolution of the topology and weight distribution of neural networks," IEEE Trans. Neural Networks, vol. 5, no. 1, pp. 39-53, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.1 , pp. 39-53
    • Maniezzo, V.1
  • 8
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao, "Evolving artificial neural networks," Proc. the IEEE, vol. 87, no. 9, pp. 1423-1447, 1999.
    • (1999) Proc. the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 9
    • 0035566378 scopus 로고    scopus 로고
    • A robust evolutionary algorithm for training neural networks
    • J. M. Yang and C. Y. Cao, "A robust evolutionary algorithm for training neural networks," Neural Computing and Application, vol. 10, no. 3, pp. 214-230, 2001.
    • (2001) Neural Computing and Application , vol.10 , Issue.3 , pp. 214-230
    • Yang, J.M.1    Cao, C.Y.2
  • 14
    • 10844288785 scopus 로고    scopus 로고
    • On the hybrid of genetic algorithm and particle swarm optimization for evolving recurrent neural network
    • Budapest, Hungary
    • C.-F. Juang and Y.-C. Liou, "On the hybrid of genetic algorithm and particle swarm optimization for evolving recurrent neural network," in Proc. International Joint Conference on Neural Networks, Budapest, Hungary, 2004, pp. 2285-2289.
    • (2004) Proc. International Joint Conference on Neural Networks , pp. 2285-2289
    • Juang, C.-F.1    Liou, Y.-C.2
  • 19
    • 0042863274 scopus 로고    scopus 로고
    • High dimensional multispectral image fusion: Classification by neural network
    • Hangzhou, China
    • M. He and J. Xia, "High dimensional multispectral image fusion: classification by neural network," in Proc. SPIE, Image Processing and Pattern Recognition in Remote Sensing, vol. 4898, Hangzhou, China, 2003, pp. 36-43.
    • (2003) Proc. SPIE, Image Processing and Pattern Recognition in Remote Sensing , vol.4898 , pp. 36-43
    • He, M.1    Xia, J.2
  • 21
    • 84896721435 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimization
    • Piscataway, USA
    • Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in Proc. Congress on Evolutionary Computation, Piscataway, USA, 1999, pp. 1945-1950.
    • (1999) Proc. Congress on Evolutionary Computation , pp. 1945-1950
    • Shi, Y.1    Eberhart, R.C.2
  • 22
    • 40649096047 scopus 로고    scopus 로고
    • Feature selection using a new hybrid pso and ga algorithm for classification of hyperspectral data
    • Beijing, China
    • M. He and R. Huang, "Feature selection using a new hybrid pso and ga algorithm for classification of hyperspectral data," in Proc. 2006 International Symposium on AI, Beijing, China, 2006.
    • (2006) Proc. 2006 International Symposium on AI
    • He, M.1    Huang, R.2
  • 23
    • 78149355539 scopus 로고    scopus 로고
    • Feature selection algorithms: A survey and experimental evaluation
    • Maebashi City, Japan
    • L. C. Molina, L. Belanche, and A. Nebot, "Feature selection algorithms: a survey and experimental evaluation," in Proc. International Conference on Data Mining, Maebashi City, Japan, 2002, pp. 306-313.
    • (2002) Proc. International Conference on Data Mining , pp. 306-313
    • Molina, L.C.1    Belanche, L.2    Nebot, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.