메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1877-1882

Intuitive clustering of biological data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; BOOLEAN FUNCTIONS; CLUSTER ANALYSIS; COMPUTER NETWORKS; FLOW OF SOLIDS; FUZZY CLUSTERING; NEURAL NETWORKS;

EID: 51749089309     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2007.4371244     Document Type: Conference Paper
Times cited : (7)

References (29)
  • 1
    • 7044238453 scopus 로고    scopus 로고
    • The use of a supervised k-means algorithm on real-valued data with applications in health
    • P.W.H.Chung, C.J.Hinde, A.All eds, IEA/AIE 2003
    • S.H. Al-Harbi and V.J. Rayward-Smith (2003), The use of a supervised k-means algorithm on real-valued data with applications in health, in P.W.H.Chung, C.J.Hinde, A.All (eds.), IEA/AIE 2003, LNCS 2718, p. 575-581.
    • (2003) LNCS , vol.2718 , pp. 575-581
    • Al-Harbi, S.H.1    Rayward-Smith, V.J.2
  • 2
    • 0002163773 scopus 로고
    • Convergence properties of the k-means algorithm
    • L. Bottou and Y Bengio (1995), Convergence properties of the k-means algorithm, NIPS.
    • (1995) NIPS
    • Bottou, L.1    Bengio, Y.2
  • 6
    • 33750003107 scopus 로고    scopus 로고
    • Data processing effects on the interpretation of microarray gene expression experiments
    • A.Torda, S.Kurtz, M.Rarey (eds, German Conference on Bioinformatics (GCB) 2005
    • K. Fundel, R. Küffner, T. Aigner, and R. Zimmer (2005), Data processing effects on the interpretation of microarray gene expression experiments, in A.Torda, S.Kurtz, M.Rarey (eds.): German Conference on Bioinformatics (GCB) 2005, GI Lecture Notes in Informatics, p. 77-91.
    • (2005) GI Lecture Notes in Informatics , pp. 77-91
    • Fundel, K.1    Küffner, R.2    Aigner, T.3    Zimmer, R.4
  • 7
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self-organizing map for proximity data
    • T. Graepel and K. Obermayer (1999), A stochastic self-organizing map for proximity data, Neural Computation 11:139-155.
    • (1999) Neural Computation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 10
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • B. Hammer, M. Strickert, and T. Villmann (2005), Supervised neural gas with general similarity measure, Neural Processing Letters 21(1):21-44.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 11
    • 34147093858 scopus 로고    scopus 로고
    • On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification
    • A. Juan and E. Vidal (2000), On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification, in ICPR 2000, vol.2, p. 680-683.
    • (2000) ICPR 2000 , vol.2 , pp. 680-683
    • Juan, A.1    Vidal, E.2
  • 15
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo (2002), How to make large self-organizing maps for nonvectorial data, Neural Networks 15:945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 16
    • 13244255357 scopus 로고    scopus 로고
    • Incremental genetic K-means algorithm and its application in gene expression data analysis
    • Y. Lu, S. Lu, F. Fotouhi, Y. Deng and S.J. Brown (2004), Incremental genetic K-means algorithm and its application in gene expression data analysis, BMC Bioinformatics 5:172.
    • (2004) BMC Bioinformatics , vol.5 , pp. 172
    • Lu, Y.1    Lu, S.2    Fotouhi, F.3    Deng, Y.4    Brown, S.J.5
  • 17
    • 0019189775 scopus 로고
    • Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes
    • C. Lundsteen, J. Phillip, and E. Granum (1980), Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes, Clinical Genetics 18:355-370.
    • (1980) Clinical Genetics , vol.18 , pp. 355-370
    • Lundsteen, C.1    Phillip, J.2    Granum, E.3
  • 18
    • 0027632248 scopus 로고
    • Neural-gas' network for vector quantization and its application to time-series prediction
    • T. Martinetz, S.G. Berkovich, and K.J. Schulten (1993), 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks 4:558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.G.2    Schulten, K.J.3
  • 19
    • 0029921179 scopus 로고    scopus 로고
    • Quantifying the local reliability of a sequence alignment
    • H. Mevissen and M. Vingron (1996), Quantifying the local reliability of a sequence alignment, Protein Engineering 9:127-132.
    • (1996) Protein Engineering , vol.9 , pp. 127-132
    • Mevissen, H.1    Vingron, M.2
  • 20
    • 33747432968 scopus 로고    scopus 로고
    • Correlation Statistics for cDNA Microarray Image Analysis
    • R. Nagarajan and M. Upreti (2006), Correlation Statistics for cDNA Microarray Image Analysis, Computational Biology and Bioinformatics, 3(3):232-238.
    • (2006) Computational Biology and Bioinformatics , vol.3 , Issue.3 , pp. 232-238
    • Nagarajan, R.1    Upreti, M.2
  • 21
    • 33745360257 scopus 로고    scopus 로고
    • Edit distance based kernel functions for structural pattern classification
    • to appear in
    • M. Neuhaus and H. Bunke (2006), Edit distance based kernel functions for structural pattern classification, to appear in Pattern Recognition.
    • (2006) Pattern Recognition
    • Neuhaus, M.1    Bunke, H.2
  • 22
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • S. Seo and K. Obermayer (2004), Self-organizing maps and clustering methods for matrix data, Neural Networks 17:1211-1230.
    • (2004) Neural Networks , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 23
    • 0141498446 scopus 로고    scopus 로고
    • Approaches to clustering gene expression data
    • T. Jiang, T. Smith, Y. Xu, and M.Q. Zhang eds, MIT press
    • R. Shamir and R. Sharan (2001), Approaches to clustering gene expression data, In Current Topics in Computational Biology, T. Jiang, T. Smith, Y. Xu, and M.Q. Zhang (eds.), MIT press.
    • (2001) Current Topics in Computational Biology
    • Shamir, R.1    Sharan, R.2
  • 24
    • 32544451159 scopus 로고    scopus 로고
    • Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis
    • M. Strickert and U. Seiffert and N. Sreenivasulu and W. Weschke and T. Villmann and B. Hammer (2006), Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis, Neurocomputing 69(6-7):651-659.
    • (2006) Neurocomputing , vol.69 , Issue.6-7 , pp. 651-659
    • Strickert, M.1    Seiffert, U.2    Sreenivasulu, N.3    Weschke, W.4    Villmann, T.5    Hammer, B.6
  • 25
    • 15944413421 scopus 로고    scopus 로고
    • Relational patterns of gene expression via non-metric multidimensional scaling analysis
    • Y.-H. Taguchi and Y. Oono (2004), Relational patterns of gene expression via non-metric multidimensional scaling analysis, Bioinformatics 21(6):730-740.
    • (2004) Bioinformatics , vol.21 , Issue.6 , pp. 730-740
    • Taguchi, Y.-H.1    Oono, Y.2
  • 28
    • 0029050617 scopus 로고
    • Computer-derived nuclear features distinguish malignant from benign breast cytology
    • W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian (1995), Computer-derived nuclear features distinguish malignant from benign breast cytology, Human Pathology, 26:792-796.
    • (1995) Human Pathology , vol.26 , pp. 792-796
    • Wolberg, W.H.1    Street, W.N.2    Heisey, D.M.3    Mangasarian, O.L.4
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.