메뉴 건너뛰기




Volumn 42, Issue 1, 2009, Pages 17-26

Feature extraction for one-class classification problems: Enhancements to biased discriminant analysis

Author keywords

BDA; Classification; One against rest; One class

Indexed keywords

DISCRIMINANT ANALYSIS; FACE RECOGNITION; FEATURE EXTRACTION; TURBULENT FLOW;

EID: 51649124446     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.07.002     Document Type: Article
Times cited : (29)

References (20)
  • 2
    • 0022266934 scopus 로고
    • An optimal orthonormal system for discriminant analysis
    • Okada T., and Tomita S. An optimal orthonormal system for discriminant analysis. Pattern Recognition 18 2 (1985) 139-144
    • (1985) Pattern Recognition , vol.18 , Issue.2 , pp. 139-144
    • Okada, T.1    Tomita, S.2
  • 3
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion
    • Loog M., and Duin R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26 6 (2004) 732-739
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.P.W.2
  • 5
    • 0035680168 scopus 로고    scopus 로고
    • X.S. Zhou, T.S. Huang, Small sample learning during multimedia retrieval using biasmap, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, USA, December 2001, pp. 11-17.
    • X.S. Zhou, T.S. Huang, Small sample learning during multimedia retrieval using biasmap, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, USA, December 2001, pp. 11-17.
  • 6
    • 10044254164 scopus 로고    scopus 로고
    • Regularization studies of linear discriminant analysis in small sample size scenarios with applications to face recognition
    • Lu J., Plataniotis K.N., and Venetsanopoulos A.N. Regularization studies of linear discriminant analysis in small sample size scenarios with applications to face recognition. Pattern Recognition Lett. 26 (2005) 181-191
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 181-191
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 7
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • Chen L.F., Liao H.Y.M., Ko M.T., Lin J.C., and Yu G.Y. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33 (2000) 1713-1726
    • (2000) Pattern Recognition , vol.33 , pp. 1713-1726
    • Chen, L.F.1    Liao, H.Y.M.2    Ko, M.T.3    Lin, J.C.4    Yu, G.Y.5
  • 8
    • 14544297033 scopus 로고    scopus 로고
    • Kpca plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition
    • Yang J., Frangi F., Yang J.-Y., Zhang D., and Jin Z. Kpca plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27 2 (2005) 230-244
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.2 , pp. 230-244
    • Yang, J.1    Frangi, F.2    Yang, J.-Y.3    Zhang, D.4    Jin, Z.5
  • 9
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman J.H. Regularized discriminant analysis. J. Am. Statist. Assoc. 84 (1989) 165-175
    • (1989) J. Am. Statist. Assoc. , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 10
    • 51649089690 scopus 로고    scopus 로고
    • Q. Ke, T. Kanade, Robust subspace computation using l1 norm, 2003 〈http://citeseer.ist.psu.edu/ke03robust.html〉.
    • Q. Ke, T. Kanade, Robust subspace computation using l1 norm, 2003 〈http://citeseer.ist.psu.edu/ke03robust.html〉.
  • 11
    • 48049103479 scopus 로고    scopus 로고
    • N. Kwak, Principal component analysis based on L1 norm maximization, IEEE Trans. Pattern Anal. Mach. Intell. 30 (9) (2008) 1672-1680.
    • N. Kwak, Principal component analysis based on L1 norm maximization, IEEE Trans. Pattern Anal. Mach. Intell. 30 (9) (2008) 1672-1680.
  • 14
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.-W., and Lin C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13 2 (2002) 415-425
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 15
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimation for multi-class classification by pairwise coupling
    • Wu T.-F., Lin C.-J., and Weng R.C. Probability estimation for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 4 (2004) 975-1005
    • (2004) J. Mach. Learn. Res. , vol.4 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3
  • 16
    • 33751574629 scopus 로고    scopus 로고
    • D.M.J. Tax, R.P.W. Duin, Using two-class classifiers for multiclass classification, in: Proceedings of the 16th International Conference on Pattern Recognition, vol. 2, Quebec, Canada, August 2002, pp. 124-127.
    • D.M.J. Tax, R.P.W. Duin, Using two-class classifiers for multiclass classification, in: Proceedings of the 16th International Conference on Pattern Recognition, vol. 2, Quebec, Canada, August 2002, pp. 124-127.
  • 17
    • 24644486665 scopus 로고    scopus 로고
    • Using genetic programming for multiclass classification by simultaneously solving component binary classification problems
    • Springer, Berlin
    • Smart W., and Zhang M. Using genetic programming for multiclass classification by simultaneously solving component binary classification problems. Lecture Notes in Computer Science vol. 3447 (2005), Springer, Berlin 227-239
    • (2005) Lecture Notes in Computer Science , vol.3447 , pp. 227-239
    • Smart, W.1    Zhang, M.2
  • 18
    • 51649118918 scopus 로고    scopus 로고
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
  • 19
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • Xiong H., Swamy M.N.S., and Ahmad M.O. Optimizing the kernel in the empirical feature space. IEEE Trans. Neural Networks 16 2 (2005) 460-474
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 20
    • 25844469288 scopus 로고    scopus 로고
    • The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier
    • Veeman C.J., and Reinders M.J.T. The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier. IEEE Trans. Pattern Anal. Mach. Intell. 27 9 (2005) 1417-1429
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.9 , pp. 1417-1429
    • Veeman, C.J.1    Reinders, M.J.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.