-
1
-
-
33644584965
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.36.1587
-
A. Ashtekar, Phys. Rev. D 36, 1587 (1987). PRVDAQ 0556-2821 10.1103/PhysRevD.36.1587
-
(1987)
Phys. Rev. D
, vol.36
, pp. 1587
-
-
Ashtekar, A.1
-
2
-
-
22144440004
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.51.5507
-
J.F. Barbero G., Phys. Rev. D 51, 5507 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.51.5507
-
(1995)
Phys. Rev. D
, vol.51
, pp. 5507
-
-
Barbero, G.J.F.1
-
3
-
-
0039646461
-
-
CQGRDG 0264-9381 10.1088/0264-9381/14/10/002
-
G. Immirzi, Classical Quantum Gravity 14, L177 (1997). CQGRDG 0264-9381 10.1088/0264-9381/14/10/002
-
(1997)
Classical Quantum Gravity
, vol.14
, pp. 177
-
-
Immirzi, G.1
-
4
-
-
0000200934
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.53.5966
-
S. Holst, Phys. Rev. D 53, 5966 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.53.5966
-
(1996)
Phys. Rev. D
, vol.53
, pp. 5966
-
-
Holst, S.1
-
5
-
-
33645785873
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.73.084016
-
S. Mercuri, Phys. Rev. D 73, 084016 (2006). PRVDAQ 0556-2821 10.1103/PhysRevD.73.084016
-
(2006)
Phys. Rev. D
, vol.73
, pp. 084016
-
-
Mercuri, S.1
-
6
-
-
0032399747
-
-
CQGRDG 0264-9381 10.1088/0264-9381/15/4/011
-
T. Thiemann, Classical Quantum Gravity 15, 839 (1998). CQGRDG 0264-9381 10.1088/0264-9381/15/4/011
-
(1998)
Classical Quantum Gravity
, vol.15
, pp. 839
-
-
Thiemann, T.1
-
7
-
-
17044379027
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.61.024025
-
M. Tsuda, Phys. Rev. D 61, 024025 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.61.024025
-
(1999)
Phys. Rev. D
, vol.61
, pp. 024025
-
-
Tsuda, M.1
-
8
-
-
34547658339
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.48.393
-
F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester, Rev. Mod. Phys. 48, 393 (1976). RMPHAT 0034-6861 10.1103/RevModPhys.48.393
-
(1976)
Rev. Mod. Phys.
, vol.48
, pp. 393
-
-
Hehl, F.W.1
Von Der Heyde, P.2
Kerlick, G.D.3
Nester, J.M.4
-
9
-
-
33244464552
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.73.044013
-
A. Perez and C. Rovelli, Phys. Rev. D 73, 044013 (2006). PRVDAQ 0556-2821 10.1103/PhysRevD.73.044013
-
(2006)
Phys. Rev. D
, vol.73
, pp. 044013
-
-
Perez, A.1
Rovelli, C.2
-
10
-
-
29744455271
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.72.104002
-
L. Freidel, D. Minic, and T. Takeuchi, Phys. Rev. D 72, 104002 (2005). PRVDAQ 0556-2821 10.1103/PhysRevD.72.104002
-
(2005)
Phys. Rev. D
, vol.72
, pp. 104002
-
-
Freidel, L.1
Minic, D.2
Takeuchi, T.3
-
11
-
-
46649104953
-
-
CQGRDG 0264-9381 10.1088/0264-9381/25/14/145012
-
S. Alexandrov, Classical Quantum Gravity 25, 145012 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/14/145012
-
(2008)
Classical Quantum Gravity
, vol.25
, pp. 145012
-
-
Alexandrov, S.1
-
12
-
-
51649098249
-
-
In the gravitational part, however, we will not follow exactly the notation of but rather that of.
-
In the gravitational part, however, we will not follow exactly the notation of but rather that of.
-
-
-
-
13
-
-
51649119927
-
-
This demonstrates that terms presented here, and which differ from those in (for α=γ), must be contained in the constraints. Ignoring the interaction term in 26, on the other hand, provides the Hamiltonian constraint of a second-order formalism which can be compared directly with the appendix of (for γ=1). Notice that the derivation sketched in does not work purely in real variables and assumes properties of the projection from complex variables. As the comparison with our results shows, the calculations of leave some extra terms in the constraint which are absent in a complete derivation based only on real variables.
-
This demonstrates that terms presented here, and which differ from those in (for α=γ), must be contained in the constraints. Ignoring the interaction term in 26, on the other hand, provides the Hamiltonian constraint of a second-order formalism which can be compared directly with the appendix of (for γ=1). Notice that the derivation sketched in does not work purely in real variables and assumes properties of the projection from complex variables. As the comparison with our results shows, the calculations of leave some extra terms in the constraint which are absent in a complete derivation based only on real variables.
-
-
-
-
14
-
-
0032361785
-
-
CQGRDG 0264-9381 10.1088/0264-9381/15/6/006
-
T. Thiemann, Classical Quantum Gravity 15, 1487 (1998). CQGRDG 0264-9381 10.1088/0264-9381/15/6/006
-
(1998)
Classical Quantum Gravity
, vol.15
, pp. 1487
-
-
Thiemann, T.1
-
15
-
-
0032369376
-
-
CQGRDG 0264-9381 10.1088/0264-9381/15/5/012
-
T. Thiemann, Classical Quantum Gravity 15, 1281 (1998). CQGRDG 0264-9381 10.1088/0264-9381/15/5/012
-
(1998)
Classical Quantum Gravity
, vol.15
, pp. 1281
-
-
Thiemann, T.1
-
16
-
-
0642324172
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.72.3642
-
H.A. Morales-Técotl and C. Rovelli, Phys. Rev. Lett. 72, 3642 (1994). PRLTAO 0031-9007 10.1103/PhysRevLett.72.3642
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 3642
-
-
Morales-Técotl, H.A.1
Rovelli, C.2
-
18
-
-
0042390379
-
-
NUPBBO 0550-3213 10.1016/0550-3213(95)00343-Q
-
H.A. Morales-Técotl and C. Rovelli, Nucl. Phys. NUPBBO 0550-3213 B451, 325 (1995). 10.1016/0550-3213(95)00343-Q
-
(1995)
Nucl. Phys.
, vol.451
, pp. 325
-
-
Morales-Técotl, H.A.1
Rovelli, C.2
-
20
-
-
21844520846
-
-
JMAPAQ 0022-2488 10.1063/1.531252
-
A. Ashtekar, J. Math. Phys. (N.Y.) JMAPAQ 0022-2488 36, 6456 (1995). 10.1063/1.531252
-
(1995)
J. Math. Phys. (N.Y.)
, vol.36
, pp. 6456
-
-
Ashtekar, A.1
-
21
-
-
0007020922
-
-
NUPBBO 0550-3213 10.1016/0550-3213(95)00150-Q
-
C. Rovelli and L. Smolin, Nucl. Phys. NUPBBO 0550-3213 B442, 593 (1995); 10.1016/0550-3213(95)00150-Q
-
(1995)
Nucl. Phys.
, vol.442
, pp. 593
-
-
Rovelli, C.1
Smolin, L.2
-
25
-
-
33744572565
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.52.5743
-
C. Rovelli and L. Smolin, Phys. Rev. D 52, 5743 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.5743
-
(1995)
Phys. Rev. D
, vol.52
, pp. 5743
-
-
Rovelli, C.1
Smolin, L.2
-
26
-
-
0002444552
-
-
edited by L. Kauffman (American Mathematical Society, Providence
-
J.C. Baez, in The Interface of Knots and Physics, edited by, L. Kauffman, (American Mathematical Society, Providence, 1996), p. 167.
-
(1996)
The Interface of Knots and Physics
, pp. 167
-
-
Baez, J.C.1
-
27
-
-
22244460237
-
-
CQGRDG 0264-9381 10.1088/0264-9381/13/6/012
-
T. Thiemann, Classical Quantum Gravity 13, 1383 (1996). CQGRDG 0264-9381 10.1088/0264-9381/13/6/012
-
(1996)
Classical Quantum Gravity
, vol.13
, pp. 1383
-
-
Thiemann, T.1
-
29
-
-
33750006488
-
-
RMPHEX 0129-055X 10.1142/S0129055X06002772
-
M. Bojowald and A. Skirzewski, Rev. Math. Phys. 18, 713 (2006). RMPHEX 0129-055X 10.1142/S0129055X06002772
-
(2006)
Rev. Math. Phys.
, vol.18
, pp. 713
-
-
Bojowald, M.1
Skirzewski, A.2
-
31
-
-
0036273244
-
-
CQGRDG 0264-9381 10.1088/0264-9381/19/10/313
-
M. Bojowald, Classical Quantum Gravity 19, 2717 (2002). CQGRDG 0264-9381 10.1088/0264-9381/19/10/313
-
(2002)
Classical Quantum Gravity
, vol.19
, pp. 2717
-
-
Bojowald, M.1
-
32
-
-
0038504450
-
-
CQGRDG 0264-9381 10.1088/0264-9381/20/13/310
-
M. Bojowald, Classical Quantum Gravity 20, 2595 (2003). CQGRDG 0264-9381 10.1088/0264-9381/20/13/310
-
(2003)
Classical Quantum Gravity
, vol.20
, pp. 2595
-
-
Bojowald, M.1
-
34
-
-
4043118292
-
-
CQGRDG 0264-9381 10.1088/0264-9381/21/15/008
-
M. Bojowald, Classical Quantum Gravity 21, 3733 (2004). CQGRDG 0264-9381 10.1088/0264-9381/21/15/008
-
(2004)
Classical Quantum Gravity
, vol.21
, pp. 3733
-
-
Bojowald, M.1
-
35
-
-
46649085668
-
-
CQGRDG 0264-9381 10.1088/0264-9381/25/14/145004
-
K. Banerjee and G. Date, Classical Quantum Gravity 25, 145004 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/14/145004
-
(2008)
Classical Quantum Gravity
, vol.25
, pp. 145004
-
-
Banerjee, K.1
Date, G.2
-
36
-
-
42049083938
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.77.084003
-
M. Bojowald, R. Das, and R. Scherrer, Phys. Rev. D 77, 084003 (2008). PRVDAQ 0556-2821 10.1103/PhysRevD.77.084003
-
(2008)
Phys. Rev. D
, vol.77
, pp. 084003
-
-
Bojowald, M.1
Das, R.2
Scherrer, R.3
|