메뉴 건너뛰기




Volumn 87, Issue 9, 2008, Pages 1909-1912

Prediction model for true metabolizable energy of feather meal and poultry offal meal using group method of data handling-type neural network

Author keywords

Feather meal; Metabolizable energy; Neural network model; Poultry offal meal

Indexed keywords


EID: 51349167200     PISSN: 00325791     EISSN: 15253171     Source Type: Journal    
DOI: 10.3382/ps.2007-00507     Document Type: Article
Times cited : (24)

References (14)
  • 1
    • 37249044315 scopus 로고    scopus 로고
    • Group method of data handling-type neural network prediction of broiler performance based on dietary metabolizable energy, methionine, and lysine
    • Ahmadi, H., M. Mottaghitalab, and N. Nariman-Zadeh. 2007. Group method of data handling-type neural network prediction of broiler performance based on dietary metabolizable energy, methionine, and lysine. J. Appl. Poult. Res. 16:494-501.
    • (2007) J. Appl. Poult. Res , vol.16 , pp. 494-501
    • Ahmadi, H.1    Mottaghitalab, M.2    Nariman-Zadeh, N.3
  • 2
    • 36249031629 scopus 로고    scopus 로고
    • Modelling and pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms
    • Amanifard, N., N. Nariman-Zadeh, M. Borji, A. Khalkhali, and A. Habibdoust. 2008. Modelling and pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Convers. Manage. 2:311-325.
    • (2008) Energy Convers. Manage , vol.2 , pp. 311-325
    • Amanifard, N.1    Nariman-Zadeh, N.2    Borji, M.3    Khalkhali, A.4    Habibdoust, A.5
  • 3
    • 84963042169 scopus 로고
    • True metabolizable energy of feather meal
    • Dale, N. 1992. True metabolizable energy of feather meal. J. Appl. Poult. Res. 1:331-334.
    • (1992) J. Appl. Poult. Res , vol.1 , pp. 331-334
    • Dale, N.1
  • 6
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff, J. E., and J. M. DeLeo. 2001. Artificial neural networks: Opening the black box. Cancer 91(Suppl. 8):1615-1635.
    • (2001) Cancer , vol.91 , Issue.SUPPL. 8 , pp. 1615-1635
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 9
  • 10
    • 33746362557 scopus 로고    scopus 로고
    • Medical data analysis using self-organizing data mining technologies
    • Lemke, F., and J. A. Mueller. 2003. Medical data analysis using self-organizing data mining technologies. Syst. Anal. Model. Simul. 10:1399-1408.
    • (2003) Syst. Anal. Model. Simul , vol.10 , pp. 1399-1408
    • Lemke, F.1    Mueller, J.A.2
  • 12
    • 17844390396 scopus 로고    scopus 로고
    • Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process
    • Nariman-Zadeh, N., A. Darvizeh, A. Jamali, and A. Moieni. 2005. Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J. Mater. Process. Technol. 164-165:1561-1571.
    • (2005) J. Mater. Process. Technol , vol.164-165 , pp. 1561-1571
    • Nariman-Zadeh, N.1    Darvizeh, A.2    Jamali, A.3    Moieni, A.4
  • 14
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao, X. 1999. Evolving artificial neural networks. Proc. IEEE 9:1423-1447.
    • (1999) Proc. IEEE , vol.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.