-
1
-
-
33847167467
-
Three solutions for a Dirichlet boundary value problem involving the p-Laplacian
-
Afrouzi G.A., and Heidarkhani S. Three solutions for a Dirichlet boundary value problem involving the p-Laplacian. Nonlinear Anal. 66 (2007) 2281-2288
-
(2007)
Nonlinear Anal.
, vol.66
, pp. 2281-2288
-
-
Afrouzi, G.A.1
Heidarkhani, S.2
-
2
-
-
0036338563
-
Positive infinitely many arbitrarily small solutions for the Dirichlet problem involving the p-Laplacian
-
Anello G., and Cordaro G. Positive infinitely many arbitrarily small solutions for the Dirichlet problem involving the p-Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 511-519
-
(2002)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.132
, pp. 511-519
-
-
Anello, G.1
Cordaro, G.2
-
3
-
-
0002377075
-
Three symmetric positive solutions for a second-order boundary value problem
-
Avery R.I., and Henderson J. Three symmetric positive solutions for a second-order boundary value problem. Appl. Math. Lett. 13 (2000) 1-7
-
(2000)
Appl. Math. Lett.
, vol.13
, pp. 1-7
-
-
Avery, R.I.1
Henderson, J.2
-
4
-
-
0002377080
-
Existence of three solutions for a two point boundary value problem
-
Bonanno G. Existence of three solutions for a two point boundary value problem. Appl. Math. Lett. 13 (2000) 53-57
-
(2000)
Appl. Math. Lett.
, vol.13
, pp. 53-57
-
-
Bonanno, G.1
-
5
-
-
0038558337
-
Multiplicity theorems for the Dirichlet problem involving the p-Laplacian
-
Bonanno G., and Livrea R. Multiplicity theorems for the Dirichlet problem involving the p-Laplacian. Nonlinear Anal. 54 (2003) 1-7
-
(2003)
Nonlinear Anal.
, vol.54
, pp. 1-7
-
-
Bonanno, G.1
Livrea, R.2
-
6
-
-
0036807747
-
Existence of three solutions for a quasilinear two point boundary value problem
-
Livrea R. Existence of three solutions for a quasilinear two point boundary value problem. Arch. Math. 79 (2002) 288-298
-
(2002)
Arch. Math.
, vol.79
, pp. 288-298
-
-
Livrea, R.1
-
7
-
-
0034346419
-
Existence of two nontrivial solutions for a class of elliptic eigenvalue problems
-
Marano S.A., and Motreanu D. Existence of two nontrivial solutions for a class of elliptic eigenvalue problems. Arch. Math. 75 (2000) 53-58
-
(2000)
Arch. Math.
, vol.75
, pp. 53-58
-
-
Marano, S.A.1
Motreanu, D.2
-
8
-
-
0036027649
-
On a three critical points theorem for non-differentiable functions and applications nonlinear boundary value problems
-
Marano S.A., and Motreanu D. On a three critical points theorem for non-differentiable functions and applications nonlinear boundary value problems. Nonlinear Anal. 48 (2002) 37-52
-
(2002)
Nonlinear Anal.
, vol.48
, pp. 37-52
-
-
Marano, S.A.1
Motreanu, D.2
-
9
-
-
32544446164
-
Multiple positive solutions for classes of p-Laplacian equations
-
Ramaswamy M., and Shivaji R. Multiple positive solutions for classes of p-Laplacian equations. Differential Integral Equations 17 11-12 (2004) 1255-1261
-
(2004)
Differential Integral Equations
, vol.17
, Issue.11-12
, pp. 1255-1261
-
-
Ramaswamy, M.1
Shivaji, R.2
-
10
-
-
0033735641
-
Existence of three solutions for a class of elliptic eigenvalue problem
-
Ricceri B. Existence of three solutions for a class of elliptic eigenvalue problem. Math. Comput. Modelling 32 (2000) 1485-1494
-
(2000)
Math. Comput. Modelling
, vol.32
, pp. 1485-1494
-
-
Ricceri, B.1
-
11
-
-
0034395861
-
On a three critical points theorem
-
Ricceri B. On a three critical points theorem. Arch. Math. (Basel) 75 (2000) 220-226
-
(2000)
Arch. Math. (Basel)
, vol.75
, pp. 220-226
-
-
Ricceri, B.1
-
12
-
-
0033076822
-
A new method for the study of nonlinear eigenvalue problems
-
Ricceri B. A new method for the study of nonlinear eigenvalue problems. C. R. Acad. Sci. Paris, Sér. I 328 (1999) 251-256
-
(1999)
C. R. Acad. Sci. Paris, Sér. I
, vol.328
, pp. 251-256
-
-
Ricceri, B.1
-
13
-
-
0040375335
-
Some inequalities of Sobolev type on two-dimensional spheres
-
General Inequalities, vol. 5. Walter W. (Ed)
-
Talenti G. Some inequalities of Sobolev type on two-dimensional spheres. In: Walter W. (Ed). General Inequalities, vol. 5. Internat. Ser Numer. Math. vol. 8 (1987) 401-408
-
(1987)
Internat. Ser Numer. Math.
, vol.8
, pp. 401-408
-
-
Talenti, G.1
|