-
1
-
-
0031274825
-
Data mining with decision trees and decision rules
-
A. Chidanand and S. Weiss. Data mining with decision trees and decision rules. Future Generation Computer Systems, 13(2-3):197-210, 1997
-
(1997)
Future Generation Computer Systems
, vol.13
, Issue.2-3
, pp. 197-210
-
-
Chidanand, A.1
Weiss, S.2
-
2
-
-
51349119905
-
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast discovery of association rules. In U. Fayyad et al. Advances in Knowledge Discovery and Data Mining. MIT, Cambridge, MA, 1996
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast discovery of association rules. In U. Fayyad et al. Advances in Knowledge Discovery and Data Mining. MIT, Cambridge, MA, 1996
-
-
-
-
3
-
-
51349094958
-
-
American Society for Quality, last accessed 2005
-
American Society for Quality. Six Sigma Forum. http://www.asq.org/info/ glossary/p.html, last accessed 2005
-
Six Sigma Forum
-
-
-
5
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
ACM, New York, NY
-
S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In SIGMOD '97: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, ACM, New York, NY, 255-264, 1997
-
(1997)
SIGMOD '97: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
9
-
-
51349142925
-
-
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery: An overview. In U. Fayyad et al. Advances in Knowledge Discovery and Data Mining 1-34. MIT, Cambridge, MA, Chapter 1, 1996
-
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery: An overview. In U. Fayyad et al. Advances in Knowledge Discovery and Data Mining 1-34. MIT, Cambridge, MA, Chapter 1, 1996
-
-
-
-
10
-
-
0036040412
-
A framework for data mining and kdd
-
ACM, New York, NY, USA
-
I. Geist. A framework for data mining and kdd. In SAC '02: Proceedings of the 2002 ACM Symposium on Applied Computing, ACM, New York, NY, USA, 508-513, 2002
-
(2002)
SAC '02: Proceedings of the 2002 ACM Symposium on Applied Computing
, pp. 508-513
-
-
Geist, I.1
-
12
-
-
0037942868
-
-
Communication of ACM, August
-
R. Grossman, M. Hornick, and G. Meyer. Data Mining Standards Initiatives. Communication of ACM, August 2002, Vol. 45 No. 8 pp. 59-61, 2002
-
(2002)
Data Mining Standards Initiatives
, vol.45
, Issue.8
, pp. 59-61
-
-
Grossman, R.1
Hornick, M.2
Meyer, G.3
-
14
-
-
0003585297
-
-
Morgan Kaufmann, Los Altos, CA, August
-
J. Han and M. Kamber. Data Mining: Concepts and Techniques, 550. Morgan Kaufmann, Los Altos, CA, August 2000
-
(2000)
Data Mining: Concepts and Techniques
, pp. 550
-
-
Han, J.1
Kamber, M.2
-
15
-
-
0039253846
-
-
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In W. Chen, J. Naughton, and P.A. Bernstein, editors, 2000 ACM SIGMOD International Conference on Management of Data, 1-12. ACM, 05 2000
-
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In W. Chen, J. Naughton, and P.A. Bernstein, editors, 2000 ACM SIGMOD International Conference on Management of Data, 1-12. ACM, 05 2000
-
-
-
-
16
-
-
0030651253
-
Generalization and decision tree induction: Efficient classification in data mining
-
Birmingham, England, April
-
M. Kamber, L. Winstone, W. Gong, S. Cheng, and J. Han. Generalization and decision tree induction: Efficient classification in data mining. In Proceedings of the 1997 International Workshop Research Issues on Data Engineering (RIDE'97), Birmingham, England, 111-120, April 1997
-
(1997)
Proceedings of the 1997 International Workshop Research Issues on Data Engineering (RIDE'97)
, pp. 111-120
-
-
Kamber, M.1
Winstone, L.2
Gong, W.3
Cheng, S.4
Han, J.5
-
19
-
-
0042934670
-
Data mining using granular computing: Fast algorithms for finding association rules
-
Physica, Heidelberg
-
T.Y. Lin and E. Louie. Data mining using granular computing: Fast algorithms for finding association rules. In Data Mining, Rough Sets and Granular Computing, 23-45. Physica, Heidelberg, 2002
-
(2002)
Data Mining, Rough Sets and Granular Computing
, pp. 23-45
-
-
Lin, T.Y.1
Louie, E.2
-
21
-
-
14944349096
-
Business Intelligence Roadmap. The Complete Project Lifecycle for Decision-Support Applications
-
L.T. Moss and S. Atre. Business Intelligence Roadmap. The Complete Project Lifecycle for Decision-Support Applications. Addison-Wesley Information Technology Series, 2004
-
(2004)
Addison-Wesley Information Technology Series
-
-
Moss, L.T.1
Atre, S.2
-
22
-
-
51349090310
-
-
Object Management Group. Common Warehouse Metamodel - Data Mining. http://www.omg.org/cgi-bin/doc?ad/00-01-01, March last accessed 2005
-
Object Management Group. Common Warehouse Metamodel - Data Mining. http://www.omg.org/cgi-bin/doc?ad/00-01-01, March last accessed 2005
-
-
-
-
23
-
-
51349153632
-
-
University of Washington, last accessed 2005
-
University of Washington. Project Definition in Project Management. http://www.washington.edu/computing/pm/define/definition.html, last accessed 2005
-
Project Definition in Project Management
-
-
-
24
-
-
0019699783
-
Information systems: Theoretical foundations
-
Z. Pawlak. Information systems: Theoretical foundations. Information Systems, 6(3):205-218, 1981
-
(1981)
Information Systems
, vol.6
, Issue.3
, pp. 205-218
-
-
Pawlak, Z.1
-
27
-
-
51349144302
-
-
SAS. SEMMA - Sample, Explore, Modify, Model, Assess. http://www.sas.com/ technologies/analytics/datamining/miner/semma.html, last accessed 2005
-
SAS. SEMMA - Sample, Explore, Modify, Model, Assess. http://www.sas.com/ technologies/analytics/datamining/miner/semma.html, last accessed 2005
-
-
-
-
28
-
-
0142214536
-
-
D. Slezak, J.Wroblewski, and M.S. Szczuka. Constructing extensions of bayesian classifiers with use of normalizing neural networks. In Foundations of Intelligent Systems, 14th International Symposium, ISMIS 2003, Maebashi City, Japan, October 28-31, 2003, Proceedings, 2871 of Lecture Notes in Computer Science, 408-416. Springer, Berlin Heidelberg New York, 2003
-
D. Slezak, J.Wroblewski, and M.S. Szczuka. Constructing extensions of bayesian classifiers with use of normalizing neural networks. In Foundations of Intelligent Systems, 14th International Symposium, ISMIS 2003, Maebashi City, Japan, October 28-31, 2003, Proceedings, volume 2871 of Lecture Notes in Computer Science, 408-416. Springer, Berlin Heidelberg New York, 2003
-
-
-
-
29
-
-
51349095379
-
-
SPSS Corporation, last accessed 2005
-
SPSS Corporation. CAT (Clementine Application Templates). http://www.spss.com/clementine/cats.htm, last accessed 2005
-
CAT (Clementine Application Templates)
-
-
|