-
1
-
-
0026124343
-
Fractional order state equations for the control of visco-elastically damped structures
-
Bagley R.L., and Calico R.A. Fractional order state equations for the control of visco-elastically damped structures. J. Guid. Control Dyn. 14 (1991) 304-311
-
(1991)
J. Guid. Control Dyn.
, vol.14
, pp. 304-311
-
-
Bagley, R.L.1
Calico, R.A.2
-
2
-
-
0030736195
-
Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system
-
Rossikhin Y.A., and Shitikova M.V. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass system. Acta Mech. 120 (1997) 109-125
-
(1997)
Acta Mech.
, vol.120
, pp. 109-125
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
3
-
-
0030127310
-
On fractional calculus and fractional multipoles in electromagnetism
-
Engheta N. On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44 4 (1996) 554-566
-
(1996)
IEEE Trans. Antennas Propag.
, vol.44
, Issue.4
, pp. 554-566
-
-
Engheta, N.1
-
4
-
-
35748971717
-
Anomalous diffusion in inhomogeneous media: Some exact results
-
Arkhincheev V.E. Anomalous diffusion in inhomogeneous media: Some exact results. Modeling Meas. Control A 26 2 (1993) 11-29
-
(1993)
Modeling Meas. Control A
, vol.26
, Issue.2
, pp. 11-29
-
-
Arkhincheev, V.E.1
-
5
-
-
0030531939
-
Fractional order diffusion wave equation
-
El-Sayed A.M.A. Fractional order diffusion wave equation. Int. J. Theoret. Phys. 35 2 (1996) 311-322
-
(1996)
Int. J. Theoret. Phys.
, vol.35
, Issue.2
, pp. 311-322
-
-
El-Sayed, A.M.A.1
-
6
-
-
0011580931
-
Introduction to transfer and motion in fractal media: The geometry of kinetics
-
Le Méhauté A., and Crepy G. Introduction to transfer and motion in fractal media: The geometry of kinetics. Solid State Ion. 9-10 (1983) 17-30
-
(1983)
Solid State Ion.
, vol.9-10
, pp. 17-30
-
-
Le Méhauté, A.1
Crepy, G.2
-
7
-
-
0000196448
-
Basic characteristics of a fractance device
-
Nakagawa M., and Sorimachi K. Basic characteristics of a fractance device. IEICE Trans. Fundam. E75-A 12 (1992) 1814-1819
-
(1992)
IEICE Trans. Fundam.
, vol.E75-A
, Issue.12
, pp. 1814-1819
-
-
Nakagawa, M.1
Sorimachi, K.2
-
8
-
-
0020831071
-
Analogue instrumentation for processing polarographic data
-
Oldham K.B., and Zoski C.G. Analogue instrumentation for processing polarographic data. J. Electroanal. Chem. 157 (1983) 27-51
-
(1983)
J. Electroanal. Chem.
, vol.157
, pp. 27-51
-
-
Oldham, K.B.1
Zoski, C.G.2
-
11
-
-
51249118178
-
-
K.S. Cole, Electric conductance of biological systems, in: Proc. Cold Spring Harbor Symp. Quant. Biol., Cold Spring Harbor, New York, 1993, pp. 107-116
-
K.S. Cole, Electric conductance of biological systems, in: Proc. Cold Spring Harbor Symp. Quant. Biol., Cold Spring Harbor, New York, 1993, pp. 107-116
-
-
-
-
12
-
-
0034517069
-
Fractional market dynamics
-
Laskin N. Fractional market dynamics. Physica A 287 (2000) 482-492
-
(2000)
Physica A
, vol.287
, pp. 482-492
-
-
Laskin, N.1
-
16
-
-
20844431533
-
-
S. Ramiro, J.A. Barbosa, T. Machado, M.I. Ferreira, K.J. Tar, Dynamics of the fractional order Van der Pol oscillator, in: Proceedings of the 2nd IEEE International Conference on Computational Cybernetics, ICCC'04, Aug. 30-Sep. 1, Vienna University of Technology, Austria, 2004, pp. 373-378
-
S. Ramiro, J.A. Barbosa, T. Machado, M.I. Ferreira, K.J. Tar, Dynamics of the fractional order Van der Pol oscillator, in: Proceedings of the 2nd IEEE International Conference on Computational Cybernetics, ICCC'04, Aug. 30-Sep. 1, Vienna University of Technology, Austria, 2004, pp. 373-378
-
-
-
-
17
-
-
33847067879
-
Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?
-
Wang Y., and Li C. Does the fractional Brusselator with efficient dimension less than 1 have a limit cycle?. Phys. Lett. A 363 (2007) 414-419
-
(2007)
Phys. Lett. A
, vol.363
, pp. 414-419
-
-
Wang, Y.1
Li, C.2
-
19
-
-
51249110927
-
-
P. Arena, R. Caponetto, L. Fortuna, D. Porto, Chaos in a fractional order Duffing system, in: Proceedings ECCTD, Budapest, Hungry, 1997, pp. 1259-1262
-
P. Arena, R. Caponetto, L. Fortuna, D. Porto, Chaos in a fractional order Duffing system, in: Proceedings ECCTD, Budapest, Hungry, 1997, pp. 1259-1262
-
-
-
-
20
-
-
0037332868
-
Chaos in fractional order autonomous nonlinear systems
-
Ahmad W.M., and Sprott J.C. Chaos in fractional order autonomous nonlinear systems. Chaos Solitons Fractals 16 (2003) 339-351
-
(2003)
Chaos Solitons Fractals
, vol.16
, pp. 339-351
-
-
Ahmad, W.M.1
Sprott, J.C.2
-
21
-
-
0041384356
-
Chaotic dynamics of the fractional Lorenz system
-
Grigorenko I., and Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91 (2003) 034101
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 034101
-
-
Grigorenko, I.1
Grigorenko, E.2
-
22
-
-
2042470796
-
Chaos in the fractional order Chen system and its control
-
Li C., and Chen G. Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22 3 (2004) 549-554
-
(2004)
Chaos Solitons Fractals
, vol.22
, Issue.3
, pp. 549-554
-
-
Li, C.1
Chen, G.2
-
23
-
-
33646366905
-
Chaotic dynamics of the fractional order Lü system and its synchronization
-
Lu J.G. Chaotic dynamics of the fractional order Lü system and its synchronization. Phys. Lett. A 354 4 (2006) 305-311
-
(2006)
Phys. Lett. A
, vol.354
, Issue.4
, pp. 305-311
-
-
Lu, J.G.1
-
24
-
-
3342927052
-
Chaos and hyperchaos in the fractional order Rössler equations
-
Li C., and Chen G. Chaos and hyperchaos in the fractional order Rössler equations. Physica A 341 (2004) 55-61
-
(2004)
Physica A
, vol.341
, pp. 55-61
-
-
Li, C.1
Chen, G.2
-
25
-
-
19144371559
-
Chaotic dynamics and synchronization of fractional order Arneodo's systems
-
Lu J.G. Chaotic dynamics and synchronization of fractional order Arneodo's systems. Chaos Solitons Fractals 26 4 (2005) 1125-1133
-
(2005)
Chaos Solitons Fractals
, vol.26
, Issue.4
, pp. 1125-1133
-
-
Lu, J.G.1
-
26
-
-
35348886158
-
Chaos in the Newton-Leipnik system with fractional order
-
Sheu L.J., Chen H.K., Chen J.H., Tam L.M., Chen W.C., Lin K.T., and Kang Y. Chaos in the Newton-Leipnik system with fractional order. Chaos Solitons Fractals 36 (2008) 98-103
-
(2008)
Chaos Solitons Fractals
, vol.36
, pp. 98-103
-
-
Sheu, L.J.1
Chen, H.K.2
Chen, J.H.3
Tam, L.M.4
Chen, W.C.5
Lin, K.T.6
Kang, Y.7
-
27
-
-
23744466023
-
Chaotic dynamics and synchronization of fractional order Genesio-Tesi systems
-
Lu J.G. Chaotic dynamics and synchronization of fractional order Genesio-Tesi systems. Chinese J. Phys. 14 (2005) 1517-1521
-
(2005)
Chinese J. Phys.
, vol.14
, pp. 1517-1521
-
-
Lu, J.G.1
-
28
-
-
31044432097
-
Chaotic dynamics of the fractional order Ikeda delay system and its synchronization
-
Lu J.G. Chaotic dynamics of the fractional order Ikeda delay system and its synchronization. Chinese J. Phys. 15 (2006) 301-305
-
(2006)
Chinese J. Phys.
, vol.15
, pp. 301-305
-
-
Lu, J.G.1
-
29
-
-
0039504232
-
Bifurcation and chaos in noninteger order cellular neural networks
-
Arena P., Caponetto R., Fortuna L., and Porto D. Bifurcation and chaos in noninteger order cellular neural networks. Internat. J. Bifur. Chaos 8 7 (1998) 1527-1539
-
(1998)
Internat. J. Bifur. Chaos
, vol.8
, Issue.7
, pp. 1527-1539
-
-
Arena, P.1
Caponetto, R.2
Fortuna, L.3
Porto, D.4
-
30
-
-
34347330038
-
A necessary condition for double scroll attractor existence in fractional order systems
-
Tavazoei M.S., and Haeri M. A necessary condition for double scroll attractor existence in fractional order systems. Phys. Lett. A 367 1-2 (2007) 102-113
-
(2007)
Phys. Lett. A
, vol.367
, Issue.1-2
, pp. 102-113
-
-
Tavazoei, M.S.1
Haeri, M.2
-
31
-
-
37549042003
-
Unreliability of frequency-domain approximation in recognizing chaos in fractional-order systems
-
Tavazoei M.S., and Haeri M. Unreliability of frequency-domain approximation in recognizing chaos in fractional-order systems. IET Signal Process. 1 4 (2007) 171-181
-
(2007)
IET Signal Process.
, vol.1
, Issue.4
, pp. 171-181
-
-
Tavazoei, M.S.1
Haeri, M.2
-
32
-
-
51249106056
-
-
D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in Systems and Application multi-conference, vol. 2, IMACS, IEEE-SMC Proceedings, Lille, France, July 1996, pp. 963-968
-
D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in Systems and Application multi-conference, vol. 2, IMACS, IEEE-SMC Proceedings, Lille, France, July 1996, pp. 963-968
-
-
-
-
33
-
-
33750295344
-
Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models
-
Ahmed E., El-Sayed A.M.A., and El-Saka H.A.A. Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models. J. Math. Anal. Appl. 325 (2007) 542-553
-
(2007)
J. Math. Anal. Appl.
, vol.325
, pp. 542-553
-
-
Ahmed, E.1
El-Sayed, A.M.A.2
El-Saka, H.A.A.3
-
34
-
-
33947133956
-
Stability analysis of linear fractional differential system with multiple time delays
-
Deng W., Li C., and Lü J. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynam. 48 (2007) 409-416
-
(2007)
Nonlinear Dynam.
, vol.48
, pp. 409-416
-
-
Deng, W.1
Li, C.2
Lü, J.3
-
36
-
-
0027685164
-
Shil'nikov's theorem-A tutorial
-
Silva C.P. Shil'nikov's theorem-A tutorial. IEEE Trans. Circuits Syst. I 40 (1993) 675-682
-
(1993)
IEEE Trans. Circuits Syst. I
, vol.40
, pp. 675-682
-
-
Silva, C.P.1
-
37
-
-
0346910376
-
New 3-D-scroll attractors in hyperchaotic Chua's circuit forming a ring
-
Cafagna D., and Grassi G. New 3-D-scroll attractors in hyperchaotic Chua's circuit forming a ring. Internat. J. Bifurc. Chaos 13 10 (2003) 2889-2903
-
(2003)
Internat. J. Bifurc. Chaos
, vol.13
, Issue.10
, pp. 2889-2903
-
-
Cafagna, D.1
Grassi, G.2
-
38
-
-
10944251999
-
Design and analysis of multi-scroll chaotic attractors from saturated function series
-
Lü J., Chen G., Yu X., and Leung H. Design and analysis of multi-scroll chaotic attractors from saturated function series. IEEE Trans. Circuits Syst. I 51 12 (2004) 2476-2490
-
(2004)
IEEE Trans. Circuits Syst. I
, vol.51
, Issue.12
, pp. 2476-2490
-
-
Lü, J.1
Chen, G.2
Yu, X.3
Leung, H.4
-
39
-
-
33846056956
-
Design of multidirectional multi-scroll chaotic attractors based on fractional differential systems via switching control
-
Deng W., and Lü J. Design of multidirectional multi-scroll chaotic attractors based on fractional differential systems via switching control. Chaos 16 (2006) 043120
-
(2006)
Chaos
, vol.16
, pp. 043120
-
-
Deng, W.1
Lü, J.2
-
40
-
-
34548617848
-
Generating multidirectional multi-scroll chaotic attractors via a fractional differential hysteresis system
-
Deng W., and Lü J. Generating multidirectional multi-scroll chaotic attractors via a fractional differential hysteresis system. Phys. Lett. A 369 (2007) 438-443
-
(2007)
Phys. Lett. A
, vol.369
, pp. 438-443
-
-
Deng, W.1
Lü, J.2
-
41
-
-
0002573630
-
Metastable chaos: The transition to sustained chaotic oscillation in a model of Lorenz
-
Yorke J.A., and Yorke E.D. Metastable chaos: The transition to sustained chaotic oscillation in a model of Lorenz. J. Statist. Phys. 21 (1979) 263-277
-
(1979)
J. Statist. Phys.
, vol.21
, pp. 263-277
-
-
Yorke, J.A.1
Yorke, E.D.2
-
42
-
-
0036650479
-
A predictor-corrector approach for the numerical solution of fractional differential equations
-
Diethelm K., Ford N.J., and Freed A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 29 (2002) 3-22
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
43
-
-
49549126801
-
An equation for continuous chaos
-
Rössler O.E. An equation for continuous chaos. Phys. Lett. A 57 5 (1976) 397-398
-
(1976)
Phys. Lett. A
, vol.57
, Issue.5
, pp. 397-398
-
-
Rössler, O.E.1
-
45
-
-
0036999538
-
Bridge the gap between the Lorenz system and the Chen system
-
Lü J., Chen G., Cheng D., and Celikovsky S. Bridge the gap between the Lorenz system and the Chen system. Internat. J. Bifurc. Chaos 12 12 (2002) 2917-2926
-
(2002)
Internat. J. Bifurc. Chaos
, vol.12
, Issue.12
, pp. 2917-2926
-
-
Lü, J.1
Chen, G.2
Cheng, D.3
Celikovsky, S.4
-
46
-
-
38649117916
-
Nonlinear dynamics and chaos in a fractional order financial system
-
Chen W.C. Nonlinear dynamics and chaos in a fractional order financial system. Chaos Solitons Fractals 36 (2008) 1305-1314
-
(2008)
Chaos Solitons Fractals
, vol.36
, pp. 1305-1314
-
-
Chen, W.C.1
|