-
1
-
-
0036259981
-
-
(a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.
-
(2002)
Angew. Chem., Int. Ed
, vol.41
, pp. 1668
-
-
Nicolaou, K.C.1
Snyder, S.A.2
Montagnon, T.3
Vassilikogiannakis, G.4
-
9
-
-
0028090225
-
-
Selected representative examples:(a) Koreeda, M.; Yang, W. J. Am. Chem. Soc. 1994, 116, 10793.
-
Selected representative examples:(a) Koreeda, M.; Yang, W. J. Am. Chem. Soc. 1994, 116, 10793.
-
-
-
-
10
-
-
0031735791
-
-
(b) Wang, Y.; Koreeda, M.; Chatterji, T.; Gates, K. S. J. Org. Chem. 1998, 63, 8644.
-
(1998)
J. Org. Chem
, vol.63
, pp. 8644
-
-
Wang, Y.1
Koreeda, M.2
Chatterji, T.3
Gates, K.S.4
-
11
-
-
0025121173
-
-
(c) Malleron, J. L.; Roussel, G.; Gueremy, G.; Ponsinet, G.; Robin, J. L.; Terlain, B.; Tissieres, J. M. J. Med. Chem. 1990, 33, 2744.
-
(1990)
J. Med. Chem
, vol.33
, pp. 2744
-
-
Malleron, J.L.1
Roussel, G.2
Gueremy, G.3
Ponsinet, G.4
Robin, J.L.5
Terlain, B.6
Tissieres, J.M.7
-
12
-
-
33644693780
-
-
(d) Alves, M. J.; Fortes, A. G.; Costa, F. T. Tetrahedron 2006, 62, 3095.
-
(2006)
Tetrahedron
, vol.62
, pp. 3095
-
-
Alves, M.J.1
Fortes, A.G.2
Costa, F.T.3
-
18
-
-
33846140145
-
-
(e) Yang, Y.; Lee, J.; Cho, M.; Sheares, V. V. Macromolecules 2006, 39, 8625.
-
(2006)
Macromolecules
, vol.39
, pp. 8625
-
-
Yang, Y.1
Lee, J.2
Cho, M.3
Sheares, V.V.4
-
19
-
-
0035836845
-
-
(f) Beery, M. D.; Rath, M. K.; Sheares, V. V. Macromolecules 2001, 34, 2469.
-
(2001)
Macromolecules
, vol.34
, pp. 2469
-
-
Beery, M.D.1
Rath, M.K.2
Sheares, V.V.3
-
20
-
-
3142707568
-
-
(a) Yoshimatsu, M.; Matsuura, Y.; Gotoh, K. Chem. Pharm. Bull. 2003, 51, 1405.
-
(2003)
Chem. Pharm. Bull
, vol.51
, pp. 1405
-
-
Yoshimatsu, M.1
Matsuura, Y.2
Gotoh, K.3
-
22
-
-
0028127266
-
-
(c) Block, E.; Guo, C.; Thiruvazhi, M.; Toscano, P. J. J. Am. Chem. Soc. 1994, 116, 9403.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 9403
-
-
Block, E.1
Guo, C.2
Thiruvazhi, M.3
Toscano, P.J.4
-
24
-
-
0034737991
-
-
(e) Block, E.; Birringer, M.; DeOrazio, R.; Fabian, J.; Glass, R. S.; Guo, C.; He, C.; Lorance, E.; Qian, Q.; Schroeder, T. B.; Shan, Z.; Thiruvazhi, M.; Wilson, G. S.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 5052.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 5052
-
-
Block, E.1
Birringer, M.2
DeOrazio, R.3
Fabian, J.4
Glass, R.S.5
Guo, C.6
He, C.7
Lorance, E.8
Qian, Q.9
Schroeder, T.B.10
Shan, Z.11
Thiruvazhi, M.12
Wilson, G.S.13
Zhang, X.14
-
25
-
-
0001150654
-
-
(f) Schroth, W.; Dunger, S.; Billig, F.; Spitzner, R.; Herzschuh, R.; Vogt, A.; Jende, T.; Israel, G.; Barche, J.; Ströhl, D. Tetrahedron 1996, 52, 12677.
-
(1996)
Tetrahedron
, vol.52
, pp. 12677
-
-
Schroth, W.1
Dunger, S.2
Billig, F.3
Spitzner, R.4
Herzschuh, R.5
Vogt, A.6
Jende, T.7
Israel, G.8
Barche, J.9
Ströhl, D.10
-
26
-
-
0029077918
-
-
(g) Bierer, D. E.; Dener, J. M.; Dubenko, L. G.; Gerber, R. E.; Litvak, J.; Peterli, S.; Peterli-Roth, P.; Truong, T. V.; Mao, G.; Bauer, B. E. J. Med. Chem. 1995, 38, 2628.
-
(1995)
J. Med. Chem
, vol.38
, pp. 2628
-
-
Bierer, D.E.1
Dener, J.M.2
Dubenko, L.G.3
Gerber, R.E.4
Litvak, J.5
Peterli, S.6
Peterli-Roth, P.7
Truong, T.V.8
Mao, G.9
Bauer, B.E.10
-
28
-
-
51049099199
-
-
(i) Prilezhaeva, E. N.; Tsimbal, L. V.; Shostakovskii, M. F. Zhur. Obschei Khim. 1961, 31, 2487.
-
(1961)
Zhur. Obschei Khim
, vol.31
, pp. 2487
-
-
Prilezhaeva, E.N.1
Tsimbal, L.V.2
Shostakovskii, M.F.3
-
29
-
-
51049110339
-
-
(j) Bogdanova, A. V.; Shostakovskii, M. F.; Plotnikova, G. I. Dokl. Acad. Nauk 1961, 136, 595.
-
(1961)
Dokl. Acad. Nauk
, vol.136
, pp. 595
-
-
Bogdanova, A.V.1
Shostakovskii, M.F.2
Plotnikova, G.I.3
-
30
-
-
0031585073
-
-
(k) Dabdoub, M. J.; Dabdoub, V. B.; Guerrero, P. G.; Silveira, C. C. Tetrahedron 1997, 53, 4199.
-
(1997)
Tetrahedron
, vol.53
, pp. 4199
-
-
Dabdoub, M.J.1
Dabdoub, V.B.2
Guerrero, P.G.3
Silveira, C.C.4
-
31
-
-
51049110543
-
-
(l) Kubota, T.; Ishii, T.; Minamikawa, H.; Yamaguchi, S.; Tanaka, T. Chem. Lett. 1988, 17, 1987.
-
(1987)
Chem. Lett
, vol.1988
, pp. 17
-
-
Kubota, T.1
Ishii, T.2
Minamikawa, H.3
Yamaguchi, S.4
Tanaka, T.5
-
32
-
-
33751392407
-
-
(m) Oku, A.; Urano, S.; Nakaji, T.; Qing, G.; Abe, M. J. Org. Chem. 1992, 57, 2263.
-
(1992)
J. Org. Chem
, vol.57
, pp. 2263
-
-
Oku, A.1
Urano, S.2
Nakaji, T.3
Qing, G.4
Abe, M.5
-
33
-
-
51049121856
-
-
(n) van Saarloos, T. J.; Regeling, H.; Zwanenburg, B.; Chittenden, G. J. F. J. Carbohydr. Chem. 1995, 14, 1007.
-
(1995)
J. Carbohydr. Chem
, vol.14
, pp. 1007
-
-
van Saarloos, T.J.1
Regeling, H.2
Zwanenburg, B.3
Chittenden, G.J.F.4
-
34
-
-
34447535455
-
-
Recent review:(a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 3431.
-
Recent review:(a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 3431.
-
-
-
-
35
-
-
34250810313
-
-
Selected representative examples:(a) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Yu.; Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129, 7252.
-
Selected representative examples:(a) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Yu.; Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129, 7252.
-
-
-
-
36
-
-
33847211456
-
-
(b) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P. Organometallics 2007, 26, 740.
-
(2007)
Organometallics
, vol.26
, pp. 740
-
-
Ananikov, V.P.1
Orlov, N.V.2
Beletskaya, I.P.3
-
37
-
-
33646373908
-
-
(c) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P. Organometallics 2006, 25, 1970.
-
(2006)
Organometallics
, vol.25
, pp. 1970
-
-
Ananikov, V.P.1
Orlov, N.V.2
Beletskaya, I.P.3
-
38
-
-
29144490813
-
-
(d) Ananikov, V. P.; Malyshev, D. A.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I. L. Adv. Synth. Catal. 2005, 347, 1993.
-
(1993)
Adv. Synth. Catal
, vol.2005
, pp. 347
-
-
Ananikov, V.P.1
Malyshev, D.A.2
Beletskaya, I.P.3
Aleksandrov, G.G.4
Eremenko, I.L.5
-
39
-
-
15944382700
-
-
(e) Ananikov, V. P.; Kabeshov, M. A.; Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Yu. Organometallics 2005, 24, 1275.
-
(2005)
Organometallics
, vol.24
, pp. 1275
-
-
Ananikov, V.P.1
Kabeshov, M.A.2
Beletskaya, I.P.3
Khrustalev, V.N.4
Antipin, M.Y.5
-
42
-
-
0037474822
-
-
(h) Ananikov, V. P.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I. L. Organometallics 2003, 22, 1414.
-
(2003)
Organometallics
, vol.22
, pp. 1414
-
-
Ananikov, V.P.1
Beletskaya, I.P.2
Aleksandrov, G.G.3
Eremenko, I.L.4
-
43
-
-
0001531461
-
-
For related studies see reviews: a
-
For related studies see reviews: (a) Ogawa, A. J. Organomet. Chem. 2000, 611, 463.
-
(2000)
J. Organomet. Chem
, vol.611
, pp. 463
-
-
Ogawa, A.1
-
44
-
-
4544298013
-
-
(b) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 3368
-
-
Beller, M.1
Seayad, J.2
Tillack, A.3
Jiao, H.4
-
46
-
-
4444376920
-
-
(d) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
-
(2004)
Chem. Rev
, vol.104
, pp. 3079
-
-
Alonso, F.1
Beletskaya, I.P.2
Yus, M.3
-
50
-
-
0001518970
-
-
The first study was reported by Ogawa, Sonoda, et al.: (a) Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 9796.
-
The first study was reported by Ogawa, Sonoda, et al.: (a) Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 9796.
-
-
-
-
52
-
-
0034809299
-
-
(b) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 5108
-
-
Sugoh, K.1
Kuniyasu, H.2
Sugae, T.3
Ohtaka, A.4
Takai, Y.5
Tanaka, A.6
Machino, C.7
Kambe, N.8
Kurosawa, H.9
-
53
-
-
0000012115
-
-
(c) Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 1998, 17, 5233.
-
(1998)
Organometallics
, vol.17
, pp. 5233
-
-
Suginome, M.1
Matsuda, T.2
Ito, Y.3
-
54
-
-
51049110991
-
-
We could assume an s-trans diene skeleton if this question was not addressed in the cited literature.
-
We could assume an s-trans diene skeleton if this question was not addressed in the cited literature.
-
-
-
-
55
-
-
0001544916
-
-
The potential energy surface of rotation around the single carbon-carbon bond of the 1,3-diene is characterized by two minima with a C=C-C=C angle of 180° (s-trans conformation) and 38° (s-gauche conformation). The s-cis conformation with a C=C-C=C angle of 0° is a transition state; the second transition state is located at 102°. The s-trans conformation is thermodynamically the most stable. See:(a) Wiberg, K. B.; Rablen, P. R.; Marquez, M. J. Am. Chem. Soc. 1992, 114, 8654.
-
The potential energy surface of rotation around the single carbon-carbon bond of the 1,3-diene is characterized by two minima with a C=C-C=C angle of 180° (s-trans conformation) and 38° (s-gauche conformation). The s-cis conformation with a C=C-C=C angle of 0° is a transition state; the second transition state is located at 102°. The s-trans conformation is thermodynamically the most stable. See:(a) Wiberg, K. B.; Rablen, P. R.; Marquez, M. J. Am. Chem. Soc. 1992, 114, 8654.
-
-
-
-
56
-
-
0035897457
-
-
(b) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Organometallics 2001, 20, 1652.
-
(2001)
Organometallics
, vol.20
, pp. 1652
-
-
Ananikov, V.P.1
Musaev, D.G.2
Morokuma, K.3
-
57
-
-
51049091908
-
-
See the Supporting Information for more details
-
See the Supporting Information for more details.
-
-
-
-
58
-
-
51049116468
-
-
See the Supporting Information for a detailed description of a reliable choice of solvent, temperature, etc
-
See the Supporting Information for a detailed description of a reliable choice of solvent, temperature, etc.
-
-
-
-
59
-
-
51049109244
-
-
Several experimental studies have shown that insertion of terminal alkynes into the M-E bond (E, S, Se) is highly regioselective and leads to M-CH=C(R)E species, while the formation of M-CR=C(H)E species was not observed see ref 5, Therefore, this pathway was not examined in our theoretical study
-
Several experimental studies have shown that insertion of terminal alkynes into the M-E bond (E = S, Se) is highly regioselective and leads to M-CH=C(R)E species, while the formation of M-CR=C(H)E species was not observed (see ref 5). Therefore, this pathway was not examined in our theoretical study.
-
-
-
-
60
-
-
0037139496
-
-
The calculations were carried out using the B3LYP density functional level with the Stuttgart/Dresden ECP basis set on the metal and the 6-311G(d) basis set on the other elements (see the Supporting Information for a complete description). In the previous studies it was established that this level of theory reasonably well describes the energy and geometry parameters of the systems involving transition metal complexes:(a) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 2002, 124, 2839.
-
The calculations were carried out using the B3LYP density functional level with the Stuttgart/Dresden ECP basis set on the metal and the 6-311G(d) basis set on the other elements (see the Supporting Information for a complete description). In the previous studies it was established that this level of theory reasonably well describes the energy and geometry parameters of the systems involving transition metal complexes:(a) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 2002, 124, 2839.
-
-
-
-
61
-
-
14544296576
-
-
(b) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Organometallics 2005, 24, 715.
-
(2005)
Organometallics
, vol.24
, pp. 715
-
-
Ananikov, V.P.1
Musaev, D.G.2
Morokuma, K.3
-
62
-
-
51049122845
-
-
There are two possible reasons for the observed stability of the s-gauche conformation: (1) thermodynamic reasons; for the synthesized dienes the s-gauche conformation is lower in energy than s-trans; and (2) kinetic reasons; the high energy barrier of rotation around the central C-C bond. The key difference between dienes 2 and 3 is the presence of substituent R in the 3-position of 2, which should enhance the influence of both above-mentioned factors.
-
There are two possible reasons for the observed stability of the s-gauche conformation: (1) thermodynamic reasons; for the synthesized dienes the s-gauche conformation is lower in energy than s-trans; and (2) kinetic reasons; the high energy barrier of rotation around the central C-C bond. The key difference between dienes 2 and 3 is the presence of substituent R in the 3-position of 2, which should enhance the influence of both above-mentioned factors.
-
-
-
|