메뉴 건너뛰기




Volumn 51, Issue 5, 2008, Pages 571-578

Wallace's approach to unsupervised learning: The snob program

Author keywords

Cluster analysis; Computer program; EM algorithm; Minimum message length; Mixture model

Indexed keywords

PROGRAMMING THEORY;

EID: 50949129543     PISSN: 00104620     EISSN: 14602067     Source Type: Journal    
DOI: 10.1093/comjnl/bxm121     Document Type: Article
Times cited : (6)

References (33)
  • 1
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, C.S. and Boulton, D.M. (1968) An information measure for classification. Comput. J., 11, 185-194.
    • (1968) Comput. J , vol.11 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 2
    • 0014735616 scopus 로고
    • A program for numerical classification
    • Boulton, D.M. and Wallace, C.S. (1970) A program for numerical classification. Comput. J., 13, 63-69.
    • (1970) Comput. J , vol.13 , pp. 63-69
    • Boulton, D.M.1    Wallace, C.S.2
  • 3
    • 27744564905 scopus 로고
    • A Computer Program for the Computation of Maximum Likelihood Analysis of Types
    • Memo SRM, U.S. Naval Personnel Research Activity, San Diego
    • Wolfe, J. (1965) A Computer Program for the Computation of Maximum Likelihood Analysis of Types. Research Memo SRM 65-12. U.S. Naval Personnel Research Activity, San Diego.
    • (1965) Research , pp. 65-12
    • Wolfe, J.1
  • 4
    • 0039200993 scopus 로고
    • NORMIX: Computations for Estimating the Parameters of Multivariate Normal Mixtures of Distributions
    • Memo SRM, U.S. Naval Personnel Research Activity, San Diego
    • Wolfe, J. (1967) NORMIX: Computations for Estimating the Parameters of Multivariate Normal Mixtures of Distributions. Research Memo SRM 68-2. U.S. Naval Personnel Research Activity, San Diego.
    • (1967) Research , pp. 68-72
    • Wolfe, J.1
  • 5
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe, J.H. (1970) Pattern clustering by multivariate mixture analysis. Multivariate Behav. Res., 5, 329-350.
    • (1970) Multivariate Behav. Res , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 6
    • 0038822980 scopus 로고
    • A Monte Carlo Study of Sampling Distribution of the Likelihood Ratio for Mixtures Of Multi Normal Distributions
    • U.S. Naval Personnel Research Activity, San Diego
    • Wolfe, J. (1971) A Monte Carlo Study of Sampling Distribution of the Likelihood Ratio for Mixtures Of Multi Normal Distributions. Technical Bulletin STB 672-2. U.S. Naval Personnel Research Activity, San Diego.
    • (1971) Technical Bulletin STB , vol.672 -2
    • Wolfe, J.1
  • 7
    • 0000198785 scopus 로고
    • Estimation of parameters for a mixture of normal distributions
    • Hasselblad, V. (1966) Estimation of parameters for a mixture of normal distributions. Technometrics, 8, 431-444.
    • (1966) Technometrics , vol.8 , pp. 431-444
    • Hasselblad, V.1
  • 8
    • 0000307443 scopus 로고
    • Estimation of finite mixtures of distributions from the exponential family
    • Hasselblad, V. (1969) Estimation of finite mixtures of distributions from the exponential family. J. Am. Statist. Assoc., 64, 1459-1471.
    • (1969) J. Am. Statist. Assoc , vol.64 , pp. 1459-1471
    • Hasselblad, V.1
  • 9
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of two normal distributions
    • Day, N. (1969) Estimating the components of a mixture of two normal distributions. Biometrika, 56, 463-474.
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.1
  • 10
    • 0038083042 scopus 로고
    • Classification and estimation in analysis of variance problems
    • Hartley, H. and Rao, J. (1968) Classification and estimation in analysis of variance problems, Int. Statist. Rev., 36, 141-147.
    • (1968) Int. Statist. Rev , vol.36 , pp. 141-147
    • Hartley, H.1    Rao, J.2
  • 11
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • Scott, A.J. and Symons, M.J. (1971) Clustering methods based on likelihood ratio criteria. Biometries, 27, 387-397.
    • (1971) Biometries , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 14
    • 0042883421 scopus 로고
    • An Improved Program for Classification
    • Australian Computer Science Society
    • Wallace, C.S. (1986) An Improved Program for Classification. Proc. 9th Australian Computer Science Conf., pp. 357-366. Australian Computer Science Society.
    • (1986) Proc. 9th Australian Computer Science Conf , pp. 357-366
    • Wallace, C.S.1
  • 15
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B, 39, 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 16
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J.D. and Raftery, A.E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometries, 49, 803-821.
    • (1993) Biometries , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 20
    • 50949100843 scopus 로고    scopus 로고
    • EM algorithm
    • El-Shaarawi, A.H. and Piegorsch, W.W.eds, Wiley, New York
    • Jorgensen, M.A. (2001) EM algorithm. In El-Shaarawi, A.H. and Piegorsch, W.W.(eds), Encyclopedia of Environmetrics, Vol. 2, pp. 637-653. Wiley, New York.
    • (2001) Encyclopedia of Environmetrics , vol.2 , pp. 637-653
    • Jorgensen, M.A.1
  • 21
    • 31944449467 scopus 로고
    • An Improved Program for Classification
    • Technical Report 47. Department of Computer Science, Monash University, Melbourne
    • Wallace, C.S. (1984) An Improved Program for Classification. Technical Report 47. Department of Computer Science, Monash University, Melbourne.
    • (1984)
    • Wallace, C.S.1
  • 25
    • 36048970168 scopus 로고    scopus 로고
    • High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length
    • Bouguila, N. and Ziou, D. (2007) High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. IEEE Trans. Pattern Anal. Mach. Intell., 29, 1716-1731.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell , vol.29 , pp. 1716-1731
    • Bouguila, N.1    Ziou, D.2
  • 26
    • 0041908169 scopus 로고    scopus 로고
    • Finding overlapping components with MML
    • Baxter, R.A. and Oliver, J.J. (2000) Finding overlapping components with MML. Stat. Comput., 10, 5-16.
    • (2000) Stat. Comput , vol.10 , pp. 5-16
    • Baxter, R.A.1    Oliver, J.J.2
  • 27
    • 13644264350 scopus 로고    scopus 로고
    • Minimum message length estimation using EM methods: A case study
    • Jorgensen, M.A. (2005) Minimum message length estimation using EM methods: A case study. Comput. Stat. Data Anal., 49, 147-167.
    • (2005) Comput. Stat. Data Anal , vol.49 , pp. 147-167
    • Jorgensen, M.A.1
  • 28
    • 0000905970 scopus 로고
    • Single factor analysis by minimum message length estimation
    • Wallace, C.S. and Freeman, P.R. (1992) Single factor analysis by minimum message length estimation. J. Roy. Statist. Soc. Ser. B, 54, 195-209.
    • (1992) J. Roy. Statist. Soc. Ser. B , vol.54 , pp. 195-209
    • Wallace, C.S.1    Freeman, P.R.2
  • 29
    • 0032261591 scopus 로고    scopus 로고
    • Intrinsic classification of spatially correlated data
    • Wallace, C.S. (1998) Intrinsic classification of spatially correlated data. Comput. J., 41, 602-411.
    • (1998) Comput. J , vol.41 , pp. 602-411
    • Wallace, C.S.1
  • 30
    • 38349024826 scopus 로고    scopus 로고
    • Proc. 6th IEEE Int. Conf on Computer and Information Science (ICIS)
    • y2007, 17-22
    • Visser, G. and Dowe, D.L. (2007) Minimum Message Length Clustering of Spatially-Correlated Data with Varying Inter-Class Penalties. Proc. 6th IEEE Int. Conf on Computer and Information Science (ICIS) y2007, 17-22.
    • (2007)
    • Visser, G.1    Dowe, D.L.2
  • 31
    • 0042184023 scopus 로고    scopus 로고
    • MML mixture modelling of multi-state, Poisson, von Mises circular and Gaussian distributions
    • Wallace, C.S. and Dowe, D.L. (2000) MML mixture modelling of multi-state, Poisson, von Mises circular and Gaussian distributions. Stat. Comput., 10, 73-83.
    • (2000) Stat. Comput , vol.10 , pp. 73-83
    • Wallace, C.S.1    Dowe, D.L.2
  • 32
    • 7444262931 scopus 로고    scopus 로고
    • Unsupervised Learning of Correlated Multivariate Gaussian Mixture Models Using MML
    • Gedeon, T.D. and Fung, L.C.C.eds, Springer, New York
    • Agusta, Y. and Dowe, D.L. (2003) Unsupervised Learning of Correlated Multivariate Gaussian Mixture Models Using MML. In Gedeon, T.D. and Fung, L.C.C.(eds), Lecture Notes in Computer Science, Vol. 2903, pp. 477-489. Springer, New York.
    • (2003) Lecture Notes in Computer Science , vol.2903 , pp. 477-489
    • Agusta, Y.1    Dowe, D.L.2
  • 33
    • 0033442289 scopus 로고    scopus 로고
    • Mixture model clustering using the Multimix program
    • Hunt, L.A. and Jorgensen, M.A. (1999) Mixture model clustering using the Multimix program. Aust. N. Z. J. Statist., 41, 901-919.
    • (1999) Aust. N. Z. J. Statist , vol.41 , pp. 901-919
    • Hunt, L.A.1    Jorgensen, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.