메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1647-1678

A new algorithm for estimating the effective dimension-reduction subspace

Author keywords

Central subspace; Dimension reduction; Multi index regression model; Structure adaptive approach

Indexed keywords

FINANCIAL DATA PROCESSING; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 50949115024     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (52)

References (27)
  • 2
    • 0038713181 scopus 로고    scopus 로고
    • Using linear smoothers to assess the structural dimension of regressions
    • E. Bura. Using linear smoothers to assess the structural dimension of regressions. Statistica Sinica, 13(1):143-162, 2003.
    • (2003) Statistica Sinica , vol.13 , Issue.1 , pp. 143-162
    • Bura, E.1
  • 3
    • 0035532137 scopus 로고    scopus 로고
    • Estimating the structural dimension of regressions via parametric inverse regression
    • E. Bura and R. D. Cook. Estimating the structural dimension of regressions via parametric inverse regression. J. R. Stat. Soc. Ser. B Stat. Methodol., 63(2):393-410, 2001a.
    • (2001) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.63 , Issue.2 , pp. 393-410
    • Bura, E.1    Cook, R.D.2
  • 4
    • 0442280663 scopus 로고    scopus 로고
    • Extending sliced inverse regression: The weighted chi-squared test
    • E. Bura and R. D. Cook. Extending sliced inverse regression: The weighted chi-squared test. J. Amer. Statist. Assoc., 96(455):996-1003, 2001b.
    • (2001) J. Amer. Statist. Assoc , vol.96 , Issue.455 , pp. 996-1003
    • Bura, E.1    Cook, R.D.2
  • 5
    • 42149167984 scopus 로고    scopus 로고
    • Partially linear reduced-rank regression
    • Technical report, available at
    • K. S. Chan, M. C. Li, and H. Tong. Partially linear reduced-rank regression. Technical report, available at www.stat.uiowa.edu/techrep/tr328. pdf, 2004.
    • (2004)
    • Chan, K.S.1    Li, M.C.2    Tong, H.3
  • 7
    • 0036284461 scopus 로고    scopus 로고
    • Dimension reduction for conditional mean in regression
    • R. D. Cook and B. Li. Dimension reduction for conditional mean in regression. Ann. Statist., 30(2): 455-474, 2002.
    • (2002) Ann. Statist , vol.30 , Issue.2 , pp. 455-474
    • Cook, R.D.1    Li, B.2
  • 8
    • 21644461782 scopus 로고    scopus 로고
    • Determining the dimension of iterative hessian transformation
    • R. D. Cook and B. Li. Determining the dimension of iterative hessian transformation. Ann. Statist., 32(6):2501-2531, 2004.
    • (2004) Ann. Statist , vol.32 , Issue.6 , pp. 2501-2531
    • Cook, R.D.1    Li, B.2
  • 9
    • 20444454672 scopus 로고    scopus 로고
    • Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
    • R. D. Cook and L. Ni. Sufficient dimension reduction via inverse regression: a minimum discrepancy approach. J. Amer. Statist. Assoc., 100(470):410-428, 2005.
    • (2005) J. Amer. Statist. Assoc , vol.100 , Issue.470 , pp. 410-428
    • Cook, R.D.1    Ni, L.2
  • 10
    • 33644973603 scopus 로고    scopus 로고
    • Using intraslice covariances for improved estimation of the central subspace in regression
    • R. D. Cook and L. Ni. Using intraslice covariances for improved estimation of the central subspace in regression. Biometrika, 93(1):65-74, 2006.
    • (2006) Biometrika , vol.93 , Issue.1 , pp. 65-74
    • Cook, R.D.1    Ni, L.2
  • 12
    • 84881499895 scopus 로고    scopus 로고
    • R. D. Cook and S. Weisberg. Discussion of sliced inverse regression for dimension reduction by K. C. Li. J. Amer. Statist. Assoc., 86(414):328-332, 1991.
    • R. D. Cook and S. Weisberg. Discussion of "sliced inverse regression for dimension reduction" by K. C. Li. J. Amer. Statist. Assoc., 86(414):328-332, 1991.
  • 13
    • 28044442060 scopus 로고    scopus 로고
    • On semiparametric m-estimation in single-index regression
    • M. Delecroix, M. Hristache, and V. Patilea. On semiparametric m-estimation in single-index regression. J. Statist. Plann. Inference, 136(3):730-769, 2006.
    • (2006) J. Statist. Plann. Inference , vol.136 , Issue.3 , pp. 730-769
    • Delecroix, M.1    Hristache, M.2    Patilea, V.3
  • 15
    • 0035528162 scopus 로고    scopus 로고
    • Structure adaptive approach for dimension reduction
    • M. Hristache, A. Juditsky, J. Polzehl, and V. Spokoiny. Structure adaptive approach for dimension reduction. Ann. Statist., 29(6):1537-1566, 2001a.
    • (2001) Ann. Statist , vol.29 , Issue.6 , pp. 1537-1566
    • Hristache, M.1    Juditsky, A.2    Polzehl, J.3    Spokoiny, V.4
  • 16
    • 0035539851 scopus 로고    scopus 로고
    • Direct estimation of the index coefficient in a single-index model
    • M. Hristache, A. Juditsky, and V Spokoiny. Direct estimation of the index coefficient in a single-index model. Ann. Statist., 29(3):595-623, 2001b.
    • (2001) Ann. Statist , vol.29 , Issue.3 , pp. 595-623
    • Hristache, M.1    Juditsky, A.2    Spokoiny, V.3
  • 17
    • 84950441056 scopus 로고
    • On principal hessian directions for data visualization and dimension reduction: Another application of stein's lemma
    • K.C. Li. On principal hessian directions for data visualization and dimension reduction: another application of stein's lemma. J. Amen Statist. Assoc., 87(420):1025-1039, 1992.
    • (1992) J. Amen Statist. Assoc , vol.87 , Issue.420 , pp. 1025-1039
    • Li, K.C.1
  • 18
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction. with discussion and a rejoinder by the author
    • K.C. Li. Sliced inverse regression for dimension reduction. with discussion and a rejoinder by the author. J. Amer. Statist. Assoc., 86(414):316-342, 1991.
    • (1991) J. Amer. Statist. Assoc , vol.86 , Issue.414 , pp. 316-342
    • Li, K.C.1
  • 19
    • 0001017987 scopus 로고
    • Regression analysis under link violation
    • K.C. Li and N. Duan. Regression analysis under link violation. Ann. Statist., 17(3):1009-1052, 1989.
    • (1989) Ann. Statist , vol.17 , Issue.3 , pp. 1009-1052
    • Li, K.C.1    Duan, N.2
  • 20
    • 34249037555 scopus 로고    scopus 로고
    • Sparse sufficient dimension reduction
    • L. Li. Sparse sufficient dimension reduction. Biometrika, 94(3):603-613, 2007.
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 603-613
    • Li, L.1
  • 21
    • 15844375310 scopus 로고    scopus 로고
    • A note on shrinkage sliced inverse regression
    • L. Ni, R. D. Cook, and C.-L. Tsai. A note on shrinkage sliced inverse regression. Biometrika, 92 (1):242-247, 2005.
    • (2005) Biometrika , vol.92 , Issue.1 , pp. 242-247
    • Ni, L.1    Cook, R.D.2    Tsai, C.-L.3
  • 22
    • 20444437254 scopus 로고    scopus 로고
    • Component identification and estimation in nonlinear high-dimensional regression models by structural adaptation
    • A. Samarov, V. Spokoiny, and C. Vial. Component identification and estimation in nonlinear high-dimensional regression models by structural adaptation. J. Amer. Statist. Assoc., 100(470):429-445, 2005.
    • (2005) J. Amer. Statist. Assoc , vol.100 , Issue.470 , pp. 429-445
    • Samarov, A.1    Spokoiny, V.2    Vial, C.3
  • 23
    • 43049141904 scopus 로고    scopus 로고
    • Improving dimension reduction via contour- projection
    • H. Wang, L. Ni, and C.-L. Tsai. Improving dimension reduction via contour- projection. Statistica Sinica, 18:299-311, 2008.
    • (2008) Statistica Sinica , vol.18 , pp. 299-311
    • Wang, H.1    Ni, L.2    Tsai, C.-L.3
  • 24
    • 49549110291 scopus 로고    scopus 로고
    • A constructive approach to the estimation of dimension reduction directions
    • Y. Xia. A constructive approach to the estimation of dimension reduction directions. Ann. Statist., 35(6):2654-2690, 2007.
    • (2007) Ann. Statist , vol.35 , Issue.6 , pp. 2654-2690
    • Xia, Y.1
  • 26
    • 21244477445 scopus 로고    scopus 로고
    • Direction estimation in single-index regressions
    • X. Yin and R. D. Cook. Direction estimation in single-index regressions. Biornetrika, 92(2):371-384, 2005.
    • (2005) Biornetrika , vol.92 , Issue.2 , pp. 371-384
    • Yin, X.1    Cook, R.D.2
  • 27
    • 31044444599 scopus 로고    scopus 로고
    • Dimension reduction via marginal high moments in regression
    • X. Yin and R. D. Cook. Dimension reduction via marginal high moments in regression. Statist. Probab. Lett., 76(4):393-400, 2006.
    • (2006) Statist. Probab. Lett , vol.76 , Issue.4 , pp. 393-400
    • Yin, X.1    Cook, R.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.