메뉴 건너뛰기




Volumn , Issue , 2007, Pages

A probabilistic, hierarchical, and discriminant framework for rapid and accurate detection of deformable anatomic structure

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER NETWORKS; COMPUTER VISION; IMAGE PROCESSING;

EID: 50649109232     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2007.4409045     Document Type: Conference Paper
Times cited : (21)

References (20)
  • 1
    • 12844249589 scopus 로고    scopus 로고
    • Learning to detect objects in images via a sparse, part-based representation
    • S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. PAMI, 26:1475-1490, 2004.
    • (2004) IEEE Trans. PAMI , vol.26 , pp. 1475-1490
    • Agarwal, S.1    Awan, A.2    Roth, D.3
  • 2
    • 34250830971 scopus 로고
    • Principal warps: Thin-plate splines and the decomposition of deformation
    • F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformation. IEEE Trans. PAMI, 11(6):567-585, 1989.
    • (1989) IEEE Trans. PAMI , vol.11 , Issue.6 , pp. 567-585
    • Bookstein, F.L.1
  • 4
    • 24644514946 scopus 로고    scopus 로고
    • Spatial priors for part-based recognition using statistical models
    • D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial priors for part-based recognition using statistical models. In Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Crandall, D.1    Felzenszwalb, P.2    Huttenlocher, D.3
  • 6
    • 14544286925 scopus 로고    scopus 로고
    • Representation and detection of deformable shapes
    • P. Felzenszwalb. Representation and detection of deformable shapes. IEEE Trans. PAMI, 27, 2005.
    • (2005) IEEE Trans. PAMI , vol.27
    • Felzenszwalb, P.1
  • 7
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In Proc. of CVPR, 2003.
    • (2003) Proc. of CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online leaning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of online leaning and an application to boosting. J. Computer and System Sciences, 55(1):119.
    • J. Computer and System Sciences , vol.55 , Issue.1 , pp. 119
    • Freund, Y.1    Schapire, R.2
  • 10
    • 23644447583 scopus 로고    scopus 로고
    • Doppler echocardiography flow-velocity image analysis for patients with atrial fibrillation
    • H. Greenspan, O. Shechner, M. Scheinowitz, and M. Feinberg. Doppler echocardiography flow-velocity image analysis for patients with atrial fibrillation. Ultrasound in Medicine and Biology, 31(8):1031-1040, 2005.
    • (2005) Ultrasound in Medicine and Biology , vol.31 , Issue.8 , pp. 1031-1040
    • Greenspan, H.1    Shechner, O.2    Scheinowitz, M.3    Feinberg, M.4
  • 11
    • 35148881472 scopus 로고    scopus 로고
    • A discriminative framework for modeling object class
    • A. Holub and P. Perona. A discriminative framework for modeling object class. In Proc. of CVPR, 2005.
    • (2005) Proc. of CVPR
    • Holub, A.1    Perona, P.2
  • 13
    • 0035305653 scopus 로고    scopus 로고
    • Example-based object detection in images by components
    • A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images by components. IEEE Trans. PAMI, 23:349.
    • IEEE Trans. PAMI , vol.23 , pp. 349
    • Mohan, A.1    Papageorgiou, C.2    Poggio, T.3
  • 15
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1999.
    • (1999) Nature Neuroscience , vol.2
    • Riesenhuber, M.1    Poggio, T.2
  • 16
    • 0035331684 scopus 로고    scopus 로고
    • Deformable shape detection and description via model-based region grouping
    • S. Sclaroff and L. Liu. Deformable shape detection and description via model-based region grouping. IEEE Trans. PAMI, 23:475.
    • IEEE Trans. PAMI , vol.23 , pp. 475
    • Sclaroff, S.1    Liu, L.2
  • 18
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Z. Tu. Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Tu, Z.1
  • 19
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proc. of CVPR, 2001.
    • (2001) Proc. of CVPR
    • Viola, P.1    Jones, M.2
  • 20
    • 33845573244 scopus 로고    scopus 로고
    • A generative-discriminative hybrid method for multi-view object detection
    • D. Zhang and S.-F. Chang. A generative-discriminative hybrid method for multi-view object detection. In Proc. of CVPR, 2006.
    • (2006) Proc. of CVPR
    • Zhang, D.1    Chang, S.-F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.