-
7
-
-
3543084755
-
-
C. T. Rettner, F. Fabre, J. Kimman, D. J. Auerbach, Phys. Rev. Lett. 55, 1904 (1985).
-
(1985)
Phys. Rev. Lett
, vol.55
, pp. 1904
-
-
Rettner, C.T.1
Fabre, F.2
Kimman, J.3
Auerbach, D.J.4
-
8
-
-
0034613340
-
-
Y. Huang, C. T. Rettner, D. J. Auerbach, A. M. Wodtke, Science 290, 111 (2000).
-
(2000)
Science
, vol.290
, pp. 111
-
-
Huang, Y.1
Rettner, C.T.2
Auerbach, D.J.3
Wodtke, A.M.4
-
9
-
-
3342878606
-
-
Y. Huang, A. M. Wodtke, H. Hou, C. T. Rettner, D. J. Auerbach, Phys. Rev. Lett. 84, 2985 (2000).
-
(2000)
Phys. Rev. Lett
, vol.84
, pp. 2985
-
-
Huang, Y.1
Wodtke, A.M.2
Hou, H.3
Rettner, C.T.4
Auerbach, D.J.5
-
11
-
-
34547292624
-
-
Q. Ran, D. Matsiev, D. J. Auerbach, A. M. Wodtke, Phys. Rev. Lett. 98, 237601 (2007).
-
(2007)
Phys. Rev. Lett
, vol.98
, pp. 237601
-
-
Ran, Q.1
Matsiev, D.2
Auerbach, D.J.3
Wodtke, A.M.4
-
12
-
-
0035930639
-
-
B. Gergen, H. Nienhaus, W. H. Weinberg, E. W. McFarland, Science 294, 2521 (2001).
-
(2001)
Science
, vol.294
, pp. 2521
-
-
Gergen, B.1
Nienhaus, H.2
Weinberg, W.H.3
McFarland, E.W.4
-
13
-
-
17744400326
-
-
X. Ji, A. Zuppero, J. M. Gidwani, G. A. Somorjai, J. Am. Chem. Soc. 127, 5792 (2005).
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 5792
-
-
Ji, X.1
Zuppero, A.2
Gidwani, J.M.3
Somorjai, G.A.4
-
16
-
-
13444263573
-
-
J. D. White, J. Chen, D. Matsiev, D. J. Auerbach, A. M. Wodtke, Nature 433, 503 (2005).
-
(2005)
Nature
, vol.433
, pp. 503
-
-
White, J.D.1
Chen, J.2
Matsiev, D.3
Auerbach, D.J.4
Wodtke, A.M.5
-
17
-
-
32644473835
-
-
J. D. White, J. Chen, D. Matsiev, D. J. Auerbach, A. M. Wodtke, J. Chem. Phys. 124, 064702 (2006).
-
(2006)
J. Chem. Phys
, vol.124
, pp. 064702
-
-
White, J.D.1
Chen, J.2
Matsiev, D.3
Auerbach, D.J.4
Wodtke, A.M.5
-
18
-
-
50649113458
-
-
Here, one ML is defined as one-to-one stoichiometric equivalence of Cs to surface Au atoms
-
Here, one ML is defined as one-to-one stoichiometric equivalence of Cs to surface Au atoms.
-
-
-
-
22
-
-
50649092404
-
-
Under our conditions, the work function does not change over this time scale
-
Under our conditions, the work function does not change over this time scale.
-
-
-
-
25
-
-
0000440255
-
-
L. Hellberg, J. Strömquist, B. Kasemo, B. I. Lundqvist, Phys. Rev. Lett. 74, 4742 (1995).
-
(1995)
Phys. Rev. Lett
, vol.74
, pp. 4742
-
-
Hellberg, L.1
Strömquist, J.2
Kasemo, B.3
Lundqvist, B.I.4
-
27
-
-
50649122712
-
-
The quantum yield reported here is larger than previously reported in (16) and (17) due to detector saturation problems in the previous experiment.
-
The quantum yield reported here is larger than previously reported in (16) and (17) due to detector saturation problems in the previous experiment.
-
-
-
-
28
-
-
50649109597
-
-
The energetics for electron transfer to the surface become only more favorable as the molecule approaches the surface
-
The energetics for electron transfer to the surface become only more favorable as the molecule approaches the surface.
-
-
-
-
29
-
-
50649099904
-
-
One may estimate tunneling distances based on principles set forth in (31).
-
One may estimate tunneling distances based on principles set forth in (31).
-
-
-
-
30
-
-
50649105944
-
-
Energetically, the electron can originate from as much as 0.6 eV below the Fermi level, but this does not meaningfully alter the analysis presented here.
-
Energetically, the electron can originate from as much as 0.6 eV below the Fermi level, but this does not meaningfully alter the analysis presented here.
-
-
-
-
31
-
-
33750144457
-
-
N. Shenvi, S. Roy, P. Parandekar, J. Tully, J. Chem. Phys. 125, 154703 (2006).
-
(2006)
J. Chem. Phys
, vol.125
, pp. 154703
-
-
Shenvi, N.1
Roy, S.2
Parandekar, P.3
Tully, J.4
-
32
-
-
50649121371
-
-
Equation 1 is valid only in the limit of negligible depletion of the initial NO(V = 18) population and thus small quantum yield. In the more general case, we must solve the differential equation for the population of NO(V = 18). Equation 1 is then the first term of a Taylor series expansion of the solution.
-
Equation 1 is valid only in the limit of negligible depletion of the initial NO(V = 18) population and thus small quantum yield. In the more general case, we must solve the differential equation for the population of NO(V = 18). Equation 1 is then the first term of a Taylor series expansion of the solution.
-
-
-
-
33
-
-
50649104790
-
-
We gratefully acknowledge financial support from the NSF (grant CHE-0454806) and the Partnership for International Research and Education - for Electron Chemistry and Catalysis at Interfaces (NSF grant OISE-0530268). N.H.N. acknowledges financial support through a Feodor-Lynen fellowship provided by the Alexander von Humboldt Foundation. We thank D. Matsiev for many useful discussions and suggestions and a critical reading of this manuscript.
-
We gratefully acknowledge financial support from the NSF (grant CHE-0454806) and the Partnership for International Research and Education - for Electron Chemistry and Catalysis at Interfaces (NSF grant OISE-0530268). N.H.N. acknowledges financial support through a Feodor-Lynen fellowship provided by the Alexander von Humboldt Foundation. We thank D. Matsiev for many useful discussions and suggestions and a critical reading of this manuscript.
-
-
-
|