메뉴 건너뛰기




Volumn , Issue , 2001, Pages 195-200

Function approximation with evolved multilayer perceptions

Author keywords

Function Approximation; Generalization; Machine Learning; Neuro Evolutionary; Optimization

Indexed keywords

APPROXIMATION THEORY; BACKPROPAGATION; EVOLUTIONARY ALGORITHMS; FUNCTIONS; LEARNING SYSTEMS; PROBLEM SOLVING;

EID: 5044230441     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Article
Times cited : (4)

References (36)
  • 2
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • Ruspini, H., (Ed.) San Francisco
    • M. Riedmiller and H. Braun. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In Ruspini, H., (Ed.) Proc. of the ICNN93, San Francisco, pp. 586-591, 1993.
    • (1993) Proc. of the ICNN93 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 4
    • 0004216572 scopus 로고
    • Evolutionary design of neural architectures - A preliminary taxonomy and guide to literature
    • AI Research Group, January . CS-TR 95-01
    • Karthik Balakrishnan and Vasant Honavar. Evolutionary design of neural architectures - a preliminary taxonomy and guide to literature. Technical report, AI Research Group, January 1995. CS-TR 95-01.
    • (1995) Technical Report
    • Balakrishnan, K.1    Honavar, V.2
  • 8
    • 5044238680 scopus 로고    scopus 로고
    • G-prop-III: Global optimization of multilayer perceptrons using an evolutionary algorithm
    • Congress on Evolutionary Computation, Orlando, USA
    • P.A. Castillo; J. González; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop-III: Global Optimization of Multilayer Perceptrons using an Evolutionary Algorithm. In Congress on Evolutionary Computation,In Genetic and Evolutionary Computation Conference, Volume I, pp. 942, Orlando, USA, 1999.
    • (1999) Genetic and Evolutionary Computation Conference , vol.1 , pp. 942
    • Castillo, P.A.1    González, J.2    Merelo, J.J.3    Rivas, V.4    Romero, G.5    Prieto, A.6
  • 10
    • 0002702865 scopus 로고    scopus 로고
    • Towards designing artificial neural networks by evolution
    • Xin Yao and Yong Liu. Towards Designing Artificial Neural Networks by Evolution. Applied Mathematics and Computation, 91(1):83-90, 1998.
    • (1998) Applied Mathematics and Computation , vol.91 , Issue.1 , pp. 83-90
    • Yao, X.1    Liu, Y.2
  • 13
    • 0007447315 scopus 로고
    • A review of evolutionary artificial neural networks
    • CSIRO
    • X. Yao. A review of evolutionary artificial neural networks. Technical report, CSIRO, 1992.
    • (1992) Technical Report
    • Yao, X.1
  • 14
    • 84878533948 scopus 로고    scopus 로고
    • Evolutionary neural networks for nonlinear dynamics modeling
    • Parallel Problem Solving from Nature 98
    • I. De Falco; A. Iazzetta; P. Natale; E. Tarantino. Evolutionary Neural Networks for Nonlinear Dynamics Modeling. Parallel Problem Solving from Nature 98. Lectures Notes in Computer Science, vol. 1498, 593-602, 1998.
    • (1998) Lectures Notes in Computer Science , vol.1498 , pp. 593-602
    • De Falco, I.1    Iazzetta, A.2    Natale, P.3    Tarantino, E.4
  • 15
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • Whitley D.; Starkweather T.; Bogart C. Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel computing, Vol. 14, pp. 347-361, 1993.
    • (1993) Parallel Computing , vol.14 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3
  • 16
    • 0001961776 scopus 로고
    • Dynamic parameter encoding for genetic algorithms
    • Schraudolph N.N. and Belew R.K. Dynamic parameter encoding for genetic algorithms. Machine Learning, vol. 9, N. 1, 9-21, 1992.
    • (1992) Machine Learning , vol.9 , Issue.1 , pp. 9-21
    • Schraudolph, N.N.1    Belew, R.K.2
  • 17
    • 0007444029 scopus 로고
    • Evolution and learning in neural networks: The number and distribution of learning trials affect the rate of evolution
    • R. Keesing and D.G. Stork. Evolution and learning in neural networks: the number and distribution of learning trials affect the rate of evolution. Advances in Neural Information Processing Systems, 3, 805-810, 1991.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 805-810
    • Keesing, R.1    Stork, D.G.2
  • 18
    • 0001410750 scopus 로고
    • A new factor in evolution
    • J.M. Baldwin. A new factor in evolution. American Naturalist 30, 441-451, 1896.
    • (1896) American Naturalist , vol.30 , pp. 441-451
    • Baldwin, J.M.1
  • 19
    • 84980029963 scopus 로고
    • GANNet: A genetic algorithm for optimizing topology and weights in neural network design
    • IWANN93
    • David White and Panos Ligomenides. GANNet: A Genetic Algorithm for Optimizing Topology and Weights in Neural Network Design. IWANN93. Lectures Notes in Computer Science, vol. 686, 322-327, 1993.
    • (1993) Lectures Notes in Computer Science , vol.686 , pp. 322-327
    • White, D.1    Ligomenides, P.2
  • 21
    • 0031281425 scopus 로고    scopus 로고
    • Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization
    • G. Bebis; M. Georgiopoulos; T. Kasparis. Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization. Neurocomputing 17 (1997) 167-194, 1997.
    • (1997) Neurocomputing , vol.17 , Issue.1997 , pp. 167-194
    • Bebis, G.1    Georgiopoulos, M.2    Kasparis, T.3
  • 22
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • Kitano H. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, Vol. 4, pp. 461-476, 1990.
    • (1990) Complex Systems , vol.4 , pp. 461-476
    • Kitano, H.1
  • 24
    • 25644449990 scopus 로고
    • Optimisation of artificial neural networks structure using genetic techniques implemented on multiple transputers
    • Dodd N.; MacFarlane D.; Marland C. Optimisation of artificial neural networks structure using genetic techniques implemented on multiple transputers. Proceedings of Transputing 91, 1991.
    • (1991) Proceedings of Transputing , vol.91
    • Dodd, N.1    MacFarlane, D.2    Marland, C.3
  • 25
    • 0011246591 scopus 로고
    • Cellular enconding of genetic neural networks
    • LIP-IMAG Ecole Normale Superieure de Lyon, 46 Allée d'Italie 69007 Lyon, France
    • F.C. Gruau. Cellular enconding of genetic neural networks. Technical Report, LIP-IMAG Ecole Normale Superieure de Lyon, 46 Allée d'Italie 69007 Lyon, France, 1992.
    • (1992) Technical Report
    • Gruau, F.C.1
  • 28
    • 0006588661 scopus 로고
    • Synthesis and performance analysis of multilayer neural network architectures
    • University of Koblenz, Institute für Physics, Rheinau 3-4, D-5400 Koblenz
    • W. Schiffmann; M. Joost; R. Werner. Synthesis and performance analysis of multilayer neural network architectures. Tech. Rep. 16/1992, University of Koblenz, Institute für Physics, Rheinau 3-4, D-5400 Koblenz, 1992.
    • (1992) Tech. Rep. , vol.16 , Issue.1992
    • Schiffmann, W.1    Joost, M.2    Werner, R.3
  • 30
    • 0001439044 scopus 로고
    • Using genetic search to exploit the emergent behavior of neural networks
    • J.D. Schaffer; R.A. Caruana; L.J. Eshelman. Using genetic search to exploit the emergent behavior of neural networks. Physica D, vol. 42, pp. 244-248, 1990.
    • (1990) Physica D , vol.42 , pp. 244-248
    • Schaffer, J.D.1    Caruana, R.A.2    Eshelman, L.J.3
  • 31
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • V. Cherkassky; D. Gehring; F. Mulier. Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks, vol. 7, no. 4, pp. 969-984, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3
  • 32
    • 0027544110 scopus 로고
    • A fuzzy-logic based approach to qualitative modeling
    • M. Sugeno and T. Yasukawa. A fuzzy-logic based approach to qualitative modeling. IEEE Fuzzy Sets and Systems, vol. 1, no. 1, 1993.
    • (1993) IEEE Fuzzy Sets and Systems , vol.1 , Issue.1
    • Sugeno, M.1    Yasukawa, T.2
  • 34
    • 0026097068 scopus 로고
    • Constrained topological mapping for non-parametric regression analysis
    • V. Cherkassky; H. Lari-Najafi. Constrained topological mapping for non-parametric regression analysis. Neural Networks, vol. 4, pp. 27-40, 1991.
    • (1991) Neural Networks , vol.4 , pp. 27-40
    • Cherkassky, V.1    Lari-Najafi, H.2
  • 35
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky, D.S. (ed) Morgan-Kauffman
    • S. Fahlman and C. Lebière. The Cascade-Correlation Learning Architecture. Neural Information Processing Systems 2. Touretzky, D.S. (ed) Morgan-Kauffman, 524-532, 1990.
    • (1990) Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.1    Lebière, C.2
  • 36
    • 0001489110 scopus 로고
    • A method of pruning layered feed-forward neural networks
    • IWANN93
    • M. Pelillo and A. Fanelli. A Method of Pruning Layered Feed-Forward Neural Networks. IWANN93. Lectures Notes in Computer Science, vol. 686, 278-283, 1993.
    • (1993) Lectures Notes in Computer Science , vol.686 , pp. 278-283
    • Pelillo, M.1    Fanelli, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.