메뉴 건너뛰기




Volumn 10, Issue 1, 2009, Pages 244-253

A sufficient condition for the global asymptotic stability of a class of logistic equations with piecewise constant delay

Author keywords

Global asymptotic stability; Piecewise constant delay

Indexed keywords

ASYMPTOTIC ANALYSIS; ASYMPTOTIC STABILITY; DIFFERENTIAL EQUATIONS; DIFFERENTIATION (CALCULUS); TRAJECTORIES;

EID: 50349084060     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2007.09.006     Document Type: Article
Times cited : (10)

References (24)
  • 1
    • 0030211990 scopus 로고    scopus 로고
    • Asymptotic behavior of solutions of first order nonlinear delay difference equations
    • Chen M.P., and Liu B. Asymptotic behavior of solutions of first order nonlinear delay difference equations. Comput. Math. Appl. 32 (1996) 9-16
    • (1996) Comput. Math. Appl. , vol.32 , pp. 9-16
    • Chen, M.P.1    Liu, B.2
  • 2
    • 0027045129 scopus 로고
    • Occurrence of chaos in higher dimensional discrete time systems
    • Dohtani A. Occurrence of chaos in higher dimensional discrete time systems. SIAM J. Appl. Math. 52 (1992) 1707-1721
    • (1992) SIAM J. Appl. Math. , vol.52 , pp. 1707-1721
    • Dohtani, A.1
  • 3
    • 0021329114 scopus 로고
    • Stability results for delayed-recruitment models in population dynamics
    • Fisher M.E., and Goh B.S. Stability results for delayed-recruitment models in population dynamics. J. Math. Biol. 19 (1984) 147-156
    • (1984) J. Math. Biol. , vol.19 , pp. 147-156
    • Fisher, M.E.1    Goh, B.S.2
  • 5
    • 0002393430 scopus 로고    scopus 로고
    • Persistence and global stability in a population model
    • Gopalsamy K., and Liu P. Persistence and global stability in a population model. J. Math. Anal. Appl. 224 (1998) 59-80
    • (1998) J. Math. Anal. Appl. , vol.224 , pp. 59-80
    • Gopalsamy, K.1    Liu, P.2
  • 6
    • 0017781629 scopus 로고
    • The dynamics of density dependent population models
    • Guckenheimer J., Oster G., and Ipaktchi A. The dynamics of density dependent population models. J. Math. Biol. 4 (1977) 101-147
    • (1977) J. Math. Biol. , vol.4 , pp. 101-147
    • Guckenheimer, J.1    Oster, G.2    Ipaktchi, A.3
  • 7
    • 34848926068 scopus 로고    scopus 로고
    • An affirmative answer to Gopalsamy and Liu's conjecture in a population model
    • Li H., and Yuan R. An affirmative answer to Gopalsamy and Liu's conjecture in a population model. J. Math. Anal. Appl. 338 (2008) 1152-1168
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1152-1168
    • Li, H.1    Yuan, R.2
  • 8
    • 0008291269 scopus 로고    scopus 로고
    • Global stability and chaos in a population model with piecewise constant arguments
    • Liu P., and Gopalsamy K. Global stability and chaos in a population model with piecewise constant arguments. Appl. Math. Comput. 101 (1999) 63-88
    • (1999) Appl. Math. Comput. , vol.101 , pp. 63-88
    • Liu, P.1    Gopalsamy, K.2
  • 9
    • 0008398318 scopus 로고    scopus 로고
    • Global attractivity for a logistic equation with piecewise constant argument
    • Matsunaga H., Hara T., and Sakata S. Global attractivity for a logistic equation with piecewise constant argument. Nonlinear Differential Equations Appl. 8 (2001) 45-52
    • (2001) Nonlinear Differential Equations Appl. , vol.8 , pp. 45-52
    • Matsunaga, H.1    Hara, T.2    Sakata, S.3
  • 10
    • 0016758893 scopus 로고
    • Biological populations obeying difference equations: Stable points, stable cycles and chaos
    • May R.M. Biological populations obeying difference equations: Stable points, stable cycles and chaos. J. Theoret. Biol. 51 (1975) 511-524
    • (1975) J. Theoret. Biol. , vol.51 , pp. 511-524
    • May, R.M.1
  • 11
    • 0000336301 scopus 로고
    • Bifurcations and dynamic complexity in simple ecological models
    • May R.M., and Oster G.F. Bifurcations and dynamic complexity in simple ecological models. Amer. Natur. 110 (1976) 573-599
    • (1976) Amer. Natur. , vol.110 , pp. 573-599
    • May, R.M.1    Oster, G.F.2
  • 12
    • 0037098574 scopus 로고    scopus 로고
    • Persistence, contractivity and global stability in logistic equations with piecewise constant delays
    • Muroya Y. Persistence, contractivity and global stability in logistic equations with piecewise constant delays. J. Math. Anal. Appl. 270 (2002) 602-635
    • (2002) J. Math. Anal. Appl. , vol.270 , pp. 602-635
    • Muroya, Y.1
  • 13
    • 19444380036 scopus 로고    scopus 로고
    • On Gopalsamy and Liu's conjecture for global stability in a population model
    • Muroya Y., and Kato Y. On Gopalsamy and Liu's conjecture for global stability in a population model. J. Comp. Appl. Math. 181 (2005) 70-82
    • (2005) J. Comp. Appl. Math. , vol.181 , pp. 70-82
    • Muroya, Y.1    Kato, Y.2
  • 14
    • 0039031740 scopus 로고
    • ′ (t) = μ y (t) [1 - y (δ [(t + α) / δ])]
    • ′ (t) = μ y (t) [1 - y (δ [(t + α) / δ])]. Appl. Anal. 40 (1991) 181-188
    • (1991) Appl. Anal. , vol.40 , pp. 181-188
    • Norris, D.O.1    Soewono, E.2
  • 16
    • 0002099636 scopus 로고
    • On an interval map associated with delay logistic equation with discontinuous delays
    • Delay Differential Equations and Dynamical Systems. Busenberg S., and Mattelli M. (Eds), Springer, Berlin, New York
    • Seifert G. On an interval map associated with delay logistic equation with discontinuous delays. In: Busenberg S., and Mattelli M. (Eds). Delay Differential Equations and Dynamical Systems. Lecture Notes in Mathematics vol. 1475 (1991), Springer, Berlin, New York
    • (1991) Lecture Notes in Mathematics , vol.1475
    • Seifert, G.1
  • 17
    • 84972536397 scopus 로고
    • Certain systems with piecewise constant feedback controls with a time delay
    • Seifert G. Certain systems with piecewise constant feedback controls with a time delay. Differential Integral Equations 4 (1993) 937-947
    • (1993) Differential Integral Equations , vol.4 , pp. 937-947
    • Seifert, G.1
  • 18
    • 0011867164 scopus 로고    scopus 로고
    • Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence
    • Seifert G. Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence. J. Differential Equations 164 (2000) 451-458
    • (2000) J. Differential Equations , vol.164 , pp. 451-458
    • Seifert, G.1
  • 19
    • 84974173314 scopus 로고
    • On the stability for a population growth equation with time delay
    • Sugie J. On the stability for a population growth equation with time delay. Proc. Roy. Soc. Edinburgh 120(A) (1992) 179-181
    • (1992) Proc. Roy. Soc. Edinburgh , vol.120 A , pp. 179-181
    • Sugie, J.1
  • 20
    • 84972538844 scopus 로고
    • Global stability in a logistic equation with piecewise constant arguments
    • So J.W.-H., and Yu J.S. Global stability in a logistic equation with piecewise constant arguments. Hokkaido Math. J. 24 (1995) 269-286
    • (1995) Hokkaido Math. J. , vol.24 , pp. 269-286
    • So, J.W.-H.1    Yu, J.S.2
  • 22
    • 34848859001 scopus 로고    scopus 로고
    • Global attractivity and positive almost periodic solution for delay logistic differential equation
    • 10.1016/j.na.2006.10.031
    • Yang X., and Yuan R. Global attractivity and positive almost periodic solution for delay logistic differential equation. Nonlinear Anal. (2006) 10.1016/j.na.2006.10.031
    • (2006) Nonlinear Anal.
    • Yang, X.1    Yuan, R.2
  • 23
    • 0036815468 scopus 로고    scopus 로고
    • On the logistic delay differential equation with piecewise constant argument and quasi-periodic time dependence
    • Yuan R. On the logistic delay differential equation with piecewise constant argument and quasi-periodic time dependence. J. Math. Anal. Appl. 274 (2002) 124-133
    • (2002) J. Math. Anal. Appl. , vol.274 , pp. 124-133
    • Yuan, R.1
  • 24
    • 0001464296 scopus 로고    scopus 로고
    • Uniform stability of nonlinear difference systems
    • Zhou Z., and Zhang Q. Uniform stability of nonlinear difference systems. J. Math. Anal. Appl. 225 (1998) 486-500
    • (1998) J. Math. Anal. Appl. , vol.225 , pp. 486-500
    • Zhou, Z.1    Zhang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.