-
1
-
-
0002087156
-
Mutational equations in metric spaces
-
Aubin J.-P. Mutational equations in metric spaces. Set-Valued Anal. 1 (1993) 3-46
-
(1993)
Set-Valued Anal.
, vol.1
, pp. 3-46
-
-
Aubin, J.-P.1
-
2
-
-
0029748918
-
A proximal characterization of the reachable set
-
Clarke F. A proximal characterization of the reachable set. Systems Control Lett. 27 (1996) 195-197
-
(1996)
Systems Control Lett.
, vol.27
, pp. 195-197
-
-
Clarke, F.1
-
5
-
-
24144448789
-
Generic properties of differential inclusions and control problems
-
NAA 2004. Li Z., et al. (Ed), Springer, Berlin
-
Donchev T. Generic properties of differential inclusions and control problems. In: Li Z., et al. (Ed). NAA 2004. Lecture Notes in Comput. Sci. vol. 3401 (2005), Springer, Berlin 266-271
-
(2005)
Lecture Notes in Comput. Sci.
, vol.3401
, pp. 266-271
-
-
Donchev, T.1
-
6
-
-
49449113426
-
Characterizations of reachable sets for a class of differential inclusions
-
Donchev T., Farkhi E., and Wolenski P. Characterizations of reachable sets for a class of differential inclusions. Funct. Differ. Equ. 10 (2003) 473-483
-
(2003)
Funct. Differ. Equ.
, vol.10
, pp. 473-483
-
-
Donchev, T.1
Farkhi, E.2
Wolenski, P.3
-
7
-
-
12444280109
-
Strong invariance and one-sided Lipschitz multifunctions
-
Donchev T., Ríos V., and Wolenski P. Strong invariance and one-sided Lipschitz multifunctions. Nonlinear Anal. 60 (2005) 849-862
-
(2005)
Nonlinear Anal.
, vol.60
, pp. 849-862
-
-
Donchev, T.1
Ríos, V.2
Wolenski, P.3
-
8
-
-
0010011203
-
Measurable upper semicontinuous viability theorem for tubes
-
Frankowska H., and Plaskacz S. Measurable upper semicontinuous viability theorem for tubes. Nonlinear Anal. 36 (1996) 565-582
-
(1996)
Nonlinear Anal.
, vol.36
, pp. 565-582
-
-
Frankowska, H.1
Plaskacz, S.2
-
9
-
-
50249094075
-
-
T. Lorenz, Mutational Analysis, in press
-
T. Lorenz, Mutational Analysis, in press
-
-
-
-
10
-
-
0000300551
-
About an equation given by differential inclusion
-
(in Russian)
-
Panasiuk A., and Panasiuk V. About an equation given by differential inclusion. Math. Notes 27 (1980) 429-437 (in Russian)
-
(1980)
Math. Notes
, vol.27
, pp. 429-437
-
-
Panasiuk, A.1
Panasiuk, V.2
-
12
-
-
0025483554
-
The exponential formula for reachable set of Lipschitz differential inclusions
-
Wolenski P. The exponential formula for reachable set of Lipschitz differential inclusions. SIAM J. Control Optim. 28 (1990) 1148-1166
-
(1990)
SIAM J. Control Optim.
, vol.28
, pp. 1148-1166
-
-
Wolenski, P.1
|