메뉴 건너뛰기




Volumn 348, Issue 1, 2008, Pages 454-460

Extensions of Clarke's proximal characterization for reachable mappings of differential inclusions

Author keywords

Differential inclusions; Hamiltonian; Invariance; One side Kamke continuous mapping; Proximal normal; Reachable set

Indexed keywords


EID: 50249153523     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2008.07.027     Document Type: Article
Times cited : (7)

References (12)
  • 1
    • 0002087156 scopus 로고
    • Mutational equations in metric spaces
    • Aubin J.-P. Mutational equations in metric spaces. Set-Valued Anal. 1 (1993) 3-46
    • (1993) Set-Valued Anal. , vol.1 , pp. 3-46
    • Aubin, J.-P.1
  • 2
    • 0029748918 scopus 로고    scopus 로고
    • A proximal characterization of the reachable set
    • Clarke F. A proximal characterization of the reachable set. Systems Control Lett. 27 (1996) 195-197
    • (1996) Systems Control Lett. , vol.27 , pp. 195-197
    • Clarke, F.1
  • 3
    • 34249757886 scopus 로고
    • Qualitative properties of trajectories of control systems: A survey
    • Clarke F., Ledyaev Y., Stern R., and Wolenski P. Qualitative properties of trajectories of control systems: A survey. J. Dyn. Control Syst. 1 (1995) 1-48
    • (1995) J. Dyn. Control Syst. , vol.1 , pp. 1-48
    • Clarke, F.1    Ledyaev, Y.2    Stern, R.3    Wolenski, P.4
  • 5
    • 24144448789 scopus 로고    scopus 로고
    • Generic properties of differential inclusions and control problems
    • NAA 2004. Li Z., et al. (Ed), Springer, Berlin
    • Donchev T. Generic properties of differential inclusions and control problems. In: Li Z., et al. (Ed). NAA 2004. Lecture Notes in Comput. Sci. vol. 3401 (2005), Springer, Berlin 266-271
    • (2005) Lecture Notes in Comput. Sci. , vol.3401 , pp. 266-271
    • Donchev, T.1
  • 6
    • 49449113426 scopus 로고    scopus 로고
    • Characterizations of reachable sets for a class of differential inclusions
    • Donchev T., Farkhi E., and Wolenski P. Characterizations of reachable sets for a class of differential inclusions. Funct. Differ. Equ. 10 (2003) 473-483
    • (2003) Funct. Differ. Equ. , vol.10 , pp. 473-483
    • Donchev, T.1    Farkhi, E.2    Wolenski, P.3
  • 7
    • 12444280109 scopus 로고    scopus 로고
    • Strong invariance and one-sided Lipschitz multifunctions
    • Donchev T., Ríos V., and Wolenski P. Strong invariance and one-sided Lipschitz multifunctions. Nonlinear Anal. 60 (2005) 849-862
    • (2005) Nonlinear Anal. , vol.60 , pp. 849-862
    • Donchev, T.1    Ríos, V.2    Wolenski, P.3
  • 8
    • 0010011203 scopus 로고    scopus 로고
    • Measurable upper semicontinuous viability theorem for tubes
    • Frankowska H., and Plaskacz S. Measurable upper semicontinuous viability theorem for tubes. Nonlinear Anal. 36 (1996) 565-582
    • (1996) Nonlinear Anal. , vol.36 , pp. 565-582
    • Frankowska, H.1    Plaskacz, S.2
  • 9
    • 50249094075 scopus 로고    scopus 로고
    • T. Lorenz, Mutational Analysis, in press
    • T. Lorenz, Mutational Analysis, in press
  • 10
    • 0000300551 scopus 로고
    • About an equation given by differential inclusion
    • (in Russian)
    • Panasiuk A., and Panasiuk V. About an equation given by differential inclusion. Math. Notes 27 (1980) 429-437 (in Russian)
    • (1980) Math. Notes , vol.27 , pp. 429-437
    • Panasiuk, A.1    Panasiuk, V.2
  • 12
    • 0025483554 scopus 로고
    • The exponential formula for reachable set of Lipschitz differential inclusions
    • Wolenski P. The exponential formula for reachable set of Lipschitz differential inclusions. SIAM J. Control Optim. 28 (1990) 1148-1166
    • (1990) SIAM J. Control Optim. , vol.28 , pp. 1148-1166
    • Wolenski, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.