메뉴 건너뛰기




Volumn 101, Issue 8, 2008, Pages

Public channel cryptography: Chaos synchronization and Hilbert's tenth problem

Author keywords

[No Author keywords available]

Indexed keywords

CHAOS THEORY; CHAOTIC SYSTEMS; CRYPTOGRAPHY; DYNAMICS; MAPS; MATHEMATICAL TECHNIQUES; NUCLEAR PROPULSION; POLYNOMIAL APPROXIMATION; SYNCHRONIZATION;

EID: 50249124821     PISSN: 00319007     EISSN: 10797114     Source Type: Journal    
DOI: 10.1103/PhysRevLett.101.084102     Document Type: Article
Times cited : (63)

References (24)
  • 3
    • 0343689904 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.64.821
    • L.M. Pecora and T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990). PRLTAO 0031-9007 10.1103/PhysRevLett.64.821
    • (1990) Phys. Rev. Lett. , vol.64 , pp. 821
    • Pecora, L.M.1    Carroll, T.L.2
  • 4
    • 1442273672 scopus 로고    scopus 로고
    • IEEPAD 0018-9219 10.1109/JPROC.2002.1015002
    • A. Abel and W. Scharz, Proc. IEEE 90, 691 (2002). IEEPAD 0018-9219 10.1109/JPROC.2002.1015002
    • (2002) Proc. IEEE , vol.90 , pp. 691
    • Abel, A.1    Scharz, W.2
  • 5
    • 4243997232 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.74.1970
    • G. Perez and H. Cerdeira, Phys. Rev. Lett. 74, 1970 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.74.1970
    • (1995) Phys. Rev. Lett. , vol.74 , pp. 1970
    • Perez, G.1    Cerdeira, H.2
  • 8
    • 0032549114 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.279.5354.1198
    • G.D. VanWiggeren and R. Roy, Science 279, 1198 (1998). SCIEAS 0036-8075 10.1126/science.279.5354.1198
    • (1998) Science , vol.279 , pp. 1198
    • Vanwiggeren, G.D.1    Roy, R.2
  • 15
    • 0001739587 scopus 로고
    • AMMYAE 0002-9890 10.2307/2318447
    • M. Davis, Am. Math. Mon. AMMYAE 0002-9890 80, 233 (1973). 10.2307/2318447
    • (1973) Am. Math. Mon. , vol.80 , pp. 233
    • Davis, M.1
  • 16
    • 50249097172 scopus 로고    scopus 로고
    • http://mathworld.wolfram.com/DiophantineEquation.html, and references therein.
  • 19
    • 34848834820 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.76.035202
    • J. Kestler, W. Kinzel, and I. Kanter, Phys. Rev. E 76, 035202 (2007). PLEEE8 1063-651X 10.1103/PhysRevE.76.035202
    • (2007) Phys. Rev. e , vol.76 , pp. 035202
    • Kestler, J.1    Kinzel, W.2    Kanter, I.3
  • 21
    • 34247122848 scopus 로고    scopus 로고
    • Synchronization under a scenario of silence periods is based on the fact that resycnhronization time of two mutually coupled chaotic maps is shorter in comparison to desynchronization time, as was observed in PRLTAO 0031-9007 10.1103/PhysRevLett.98.154101
    • Synchronization under a scenario of silence periods is based on the fact that resycnhronization time of two mutually coupled chaotic maps is shorter in comparison to desynchronization time, as was observed in I. Kanter, N. Gross, E. Klein, E. Kopelowitz, P. Yoskovits, L. Khaykovich, W. Kinzel, and M. Rosenbluh, Phys. Rev. Lett. 98, 154101 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98. 154101
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 154101
    • Kanter, I.1    Gross, N.2    Klein, E.3    Kopelowitz, E.4    Yoskovits, P.5    Khaykovich, L.6    Kinzel, W.7    Rosenbluh, M.8
  • 22
    • 0000779360 scopus 로고
    • edited by D.A. Rand and L.-S. Young, Lecture Notes in Mathematics Vol. Springer-Verlag, Berlin
    • F. Takens, in Dynamical Systems and Turbulence (Warwick 1980), edited by, D.A. Rand, and, L.-S. Young, Lecture Notes in Mathematics Vol. 898 (Springer-Verlag, Berlin, 1980), pp. 366-381.
    • (1980) Dynamical Systems and Turbulence (Warwick 1980) , vol.898 , pp. 366-381
    • Takens, F.1
  • 23
    • 0019623858 scopus 로고
    • 1075-5535 10.1145/322276.322287
    • C.H. Papadimitriou, JACM 1075-5535 28, 765 (1981) proves that this problem is in NP. A proof that this problem is in NPC was offered by Uri Feige based on the following reduction from SAT. For every variable z in the input SAT formula, introduce two variables in the system of equations, z0 for a positive literal corresponding to the variable, z1 for a negative literal and add the equation z0+z1=3. This constraint forces exactly one of these literals to have value 1 (interpreted as "true") and the other to have value 2 (interpreted as "false"). For every clause Ci, add the equation stating that the sum of the literals in the clause plus a new variable ci is equal to twice the number of variables in the clause. This can be satisfied by setting ci to be equal to the number of satisfied literals in the clause, which is positive if and only if the formula is satisfiable. 10.1145/322276.322287
    • (1981) JACM , vol.28 , pp. 765
    • Papadimitriou, C.H.1
  • 24
    • 84968464334 scopus 로고
    • MCMPAF 0025-5718 10.2307/2004274
    • I. Borosh and A.S. Fraenkel, Math. Comput. MCMPAF 0025-5718 20, 107 (1966). 10.2307/2004274
    • (1966) Math. Comput. , vol.20 , pp. 107
    • Borosh, I.1    Fraenkel, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.