메뉴 건너뛰기




Volumn , Issue , 2008, Pages 830-835

DARA: Data summarisation with feature construction

Author keywords

[No Author keywords available]

Indexed keywords

AGGLOMERATION; ALPHA PARTICLE SPECTROMETERS; ASSET MANAGEMENT; CHLORINE COMPOUNDS; PARTICLE SPECTROMETERS;

EID: 50249088041     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AMS.2008.131     Document Type: Conference Paper
Times cited : (22)

References (24)
  • 1
    • 85152629807 scopus 로고
    • Incremental constructive induction: An instance-based approach
    • D. W. Aha. Incremental constructive induction: An instance-based approach. In ML, pages 117-121, 1991.
    • (1991) ML , pp. 117-121
    • Aha, D.W.1
  • 2
    • 33749390991 scopus 로고    scopus 로고
    • Data summarization approach to relational domain learning based on frequent pattern to support the development of decision making
    • R. Alfred and D. Kazakov. Data summarization approach to relational domain learning based on frequent pattern to support the development of decision making. In ADMA, pages 889-898, 2006.
    • (2006) ADMA , pp. 889-898
    • Alfred, R.1    Kazakov, D.2
  • 3
    • 50249156207 scopus 로고    scopus 로고
    • Pattern-based transformation approach to relational domain learning using dynamic aggregation for relational attributes
    • R. Alfred and D. Kazakov. Pattern-based transformation approach to relational domain learning using dynamic aggregation for relational attributes. In DMIN, pages 118-124, 2006.
    • (2006) DMIN , pp. 118-124
    • Alfred, R.1    Kazakov, D.2
  • 4
    • 38049067165 scopus 로고    scopus 로고
    • Discretization numbers for multiple-instances problem in relational database
    • R. Alfred and D. Kazakov. Discretization numbers for multiple-instances problem in relational database. In ADBIS, pages 55-65, 2007.
    • (2007) ADBIS , pp. 55-65
    • Alfred, R.1    Kazakov, D.2
  • 5
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci., 209(1-2):237-260, 1998.
    • (1998) Theor. Comput. Sci , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 8
    • 0004761280 scopus 로고
    • Inductive learning of structural descriptions: Evaluation criteria and comparative review of selected methods
    • T. G. Dietterich and R. S. Michalski. Inductive learning of structural descriptions: Evaluation criteria and comparative review of selected methods. Artif. Intell., 16(3):257-294, 1981.
    • (1981) Artif. Intell , vol.16 , Issue.3 , pp. 257-294
    • Dietterich, T.G.1    Michalski, R.S.2
  • 9
    • 0035500276 scopus 로고    scopus 로고
    • Understanding the crucial role of attribute interaction in data mining
    • A. A. Freitas. Understanding the crucial role of attribute interaction in data mining. Artif. Intell. Rev., 16(3): 177-199, 2001.
    • (2001) Artif. Intell. Rev , vol.16 , Issue.3 , pp. 177-199
    • Freitas, A.A.1
  • 10
    • 50249089864 scopus 로고    scopus 로고
    • H. J. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
    • H. J. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
  • 11
    • 84947429258 scopus 로고    scopus 로고
    • Relational distance-based clustering
    • M. Kirsten and S. Wrobel. Relational distance-based clustering. In ILP, pages 261-270, 1998.
    • (1998) ILP , pp. 261-270
    • Kirsten, M.1    Wrobel, S.2
  • 12
    • 33745142352 scopus 로고
    • Genetic programming: On the programming of computers by means of natural selection
    • J. R. Koza. Genetic programming: On the programming of computers by means of natural selection. Statistics and Computing, 4(2), 1994.
    • (1994) Statistics and Computing , vol.4 , Issue.2
    • Koza, J.R.1
  • 14
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine Learning, 5:71-99, 1990.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 16
    • 35248833168 scopus 로고    scopus 로고
    • Genetic approach to constructive induction based on non-algebraic feature representation
    • L. S. Shafti and E. Pérez. Genetic approach to constructive induction based on non-algebraic feature representation. In IDA, pages 599-610, 2003.
    • (2003) IDA , pp. 599-610
    • Shafti, L.S.1    Pérez, E.2
  • 18
    • 0030212927 scopus 로고    scopus 로고
    • Theories for mutagenicity: A study in first-order and feature-based induction
    • A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for mutagenicity: A study in first-order and feature-based induction. Artif. Intell., 85(1-2):277-299, 1996.
    • (1996) Artif. Intell , vol.85 , Issue.1-2 , pp. 277-299
    • Srinivasan, A.1    Muggleton, S.2    Sternberg, M.J.E.3    King, R.D.4
  • 19
    • 0032028849 scopus 로고    scopus 로고
    • Feature space transformation using genetic algorithms
    • H. Vafaie and K. DeJong. Feature space transformation using genetic algorithms. IEEE Intelligent Systems, 13(2):57-65, 1998.
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.2 , pp. 57-65
    • Vafaie, H.1    DeJong, K.2
  • 22
    • 50249141501 scopus 로고    scopus 로고
    • H. Y. A genetic programming approach to constructive induction. In In Proc. of the Third Annual Genetic Programming Conference, pages 146-157. Morgan Kauffman, Madison, Wisconsin, 1998.
    • H. Y. A genetic programming approach to constructive induction. In In Proc. of the Third Annual Genetic Programming Conference, pages 146-157. Morgan Kauffman, Madison, Wisconsin, 1998.
  • 23
    • 0030407025 scopus 로고    scopus 로고
    • Effects of different types of new attribute on constructive induction
    • Z. Zheng. Effects of different types of new attribute on constructive induction. In ICTAI, pages 254-257, 1996.
    • (1996) ICTAI , pp. 254-257
    • Zheng, Z.1
  • 24
    • 0033699346 scopus 로고    scopus 로고
    • Constructing x-of-n attributes for decision tree learning
    • Z. Zheng. Constructing x-of-n attributes for decision tree learning. Machine Learning, 40(1):35-75, 2000.
    • (2000) Machine Learning , vol.40 , Issue.1 , pp. 35-75
    • Zheng, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.