메뉴 건너뛰기




Volumn 159, Issue 21, 2008, Pages 2806-2818

Adaptive prototype-based fuzzy classification

Author keywords

Active learning; Cell assays; Classification; Fuzzy clustering; Image mining; Noise handling

Indexed keywords

BIOINFORMATICS; CHLORINE COMPOUNDS; EDUCATION; FLOW OF SOLIDS; FOOD PROCESSING; FUZZY CLUSTERING; FUZZY SYSTEMS; IMAGE ENHANCEMENT; LABELING; LABELS; VECTOR QUANTIZATION;

EID: 50149118576     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2008.03.019     Document Type: Article
Times cited : (2)

References (24)
  • 1
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin D. Queries and concept learning. Mach. Learn. 2 3 (1988) 319-342
    • (1988) Mach. Learn. , vol.2 , Issue.3 , pp. 319-342
    • Angluin, D.1
  • 2
    • 50149118249 scopus 로고    scopus 로고
    • Active semi-supervision for pairwise constrained clustering
    • Berry M.W., Dayal U., Kamath C., and Skillicorn D.B. (Eds), SIAM, Philadelphia, PA
    • Basu S., Banerjee A., and Mooney R.J. Active semi-supervision for pairwise constrained clustering. In: Berry M.W., Dayal U., Kamath C., and Skillicorn D.B. (Eds). SDM (2004), SIAM, Philadelphia, PA
    • (2004) SDM
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 4
    • 50149087962 scopus 로고    scopus 로고
    • C.L. Blake, D.J. Newman, S. Hettich, C.J. Merz, UCI repository of machine learning databases, 1998.
    • C.L. Blake, D.J. Newman, S. Hettich, C.J. Merz, UCI repository of machine learning databases, 1998.
  • 6
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn D.A., Atlas L., and Ladner R.E. Improving generalization with active learning. Mach. Learn. 15 2 (1994) 201-221
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.A.1    Atlas, L.2    Ladner, R.E.3
  • 7
    • 50149083330 scopus 로고    scopus 로고
    • S. Dasgupta, Analysis of a greedy active learning strategy, In: NIPS, 2004.
    • S. Dasgupta, Analysis of a greedy active learning strategy, In: NIPS, 2004.
  • 8
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • Dave R.N. Characterization and detection of noise in clustering. Pattern Recognition Lett. 12 11 (1991) 657-664
    • (1991) Pattern Recognition Lett. , vol.12 , Issue.11 , pp. 657-664
    • Dave, R.N.1
  • 9
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y., Seung H.S., Shamir E., and Tishby N. Selective sampling using the query by committee algorithm. Mach. Learn. 28 2-3 (1997) 133-168
    • (1997) Mach. Learn. , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 10
    • 1142303894 scopus 로고    scopus 로고
    • Combining labelled and unlabelled data in the design of pattern classification systems
    • Gabrys B., and Petrakieva L. Combining labelled and unlabelled data in the design of pattern classification systems. Internat. J. Approx. Reason. 35 3 (2004) 251-273
    • (2004) Internat. J. Approx. Reason. , vol.35 , Issue.3 , pp. 251-273
    • Gabrys, B.1    Petrakieva, L.2
  • 11
    • 34447307873 scopus 로고    scopus 로고
    • Active semi-supervised fuzzy clustering for image database categorization
    • Zhang H., Smith J., and Tian Q. (Eds), ACM
    • Grira N., Crucianu M., and Boujemaa N. Active semi-supervised fuzzy clustering for image database categorization. In: Zhang H., Smith J., and Tian Q. (Eds). Multimedia Information Retrieval (2005), ACM 9-16
    • (2005) Multimedia Information Retrieval , pp. 9-16
    • Grira, N.1    Crucianu, M.2    Boujemaa, N.3
  • 12
    • 0015680481 scopus 로고
    • Textural features for image classification
    • Haralick R.M., Shanmugam K., and Dinstein I. Textural features for image classification. SMC 3 6 (1973) 610-621
    • (1973) SMC , vol.3 , Issue.6 , pp. 610-621
    • Haralick, R.M.1    Shanmugam, K.2    Dinstein, I.3
  • 13
    • 0022064511 scopus 로고
    • A best possible heuristic for the k-center problem
    • Hochbaum D.S., and Shmoys D.B. A best possible heuristic for the k-center problem. Math. Oper. Res. 10 2 (1985) 180-184
    • (1985) Math. Oper. Res. , vol.10 , Issue.2 , pp. 180-184
    • Hochbaum, D.S.1    Shmoys, D.B.2
  • 14
    • 50149085381 scopus 로고    scopus 로고
    • J. Jantzen, et al., Pap-smear benchmark data for pattern classification 〈http://fuzzy.iau.dtu.dk/downloads/smear2005/〉, 2005.
    • J. Jantzen, et al., Pap-smear benchmark data for pattern classification 〈http://fuzzy.iau.dtu.dk/downloads/smear2005/〉, 2005.
  • 15
    • 33646698397 scopus 로고    scopus 로고
    • T.R. Jones, A. Carpenter, P. Golland, Voronoi-based segmentation of cells on image manifolds, in: Y. Liu, T. Jiang, C. Zhang (Eds.), CVBIA, in: Lecture Notes in Computer Science, Vol. 3765, Springer, Berlin, 2005, pp. 535-543.
    • T.R. Jones, A. Carpenter, P. Golland, Voronoi-based segmentation of cells on image manifolds, in: Y. Liu, T. Jiang, C. Zhang (Eds.), CVBIA, in: Lecture Notes in Computer Science, Vol. 3765, Springer, Berlin, 2005, pp. 535-543.
  • 16
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S., Gelatt Jr. C.D., and Vecchi M.P. Optimization by simulated annealing. Science 220 4598 (1983) 671-680
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 17
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Neurocomputing 21 1-3 (1998) 1-6
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 1-6
    • Kohonen, T.1
  • 19
    • 14344265134 scopus 로고    scopus 로고
    • Active learning using pre-clustering
    • Brodley C.E. (Ed), ACM
    • Nguyen H.T., and Smeulders A. Active learning using pre-clustering. In: Brodley C.E. (Ed). ICML (2004), ACM
    • (2004) ICML
    • Nguyen, H.T.1    Smeulders, A.2
  • 20
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: active learning with support vector machines
    • Langley P. (Ed), Morgan Kaufmann, Los Altos, CA
    • Schohn G., and Cohn D. Less is more: active learning with support vector machines. In: Langley P. (Ed). ICML (2000), Morgan Kaufmann, Los Altos, CA 839-846
    • (2000) ICML , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 21
    • 17744409615 scopus 로고    scopus 로고
    • L. Wang, K.L. Chan, Z.H. Zhang, Bootstrapping svm active learning by incorporating unlabelled images for image retrieval, in: Proc. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition, Vol. 1, 2003, pp. 629-634.
    • L. Wang, K.L. Chan, Z.H. Zhang, Bootstrapping svm active learning by incorporating unlabelled images for image retrieval, in: Proc. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition, Vol. 1, 2003, pp. 629-634.
  • 23
    • 0001702254 scopus 로고
    • Cluster validity for fuzzy clustering algorithms
    • Windham M.P. Cluster validity for fuzzy clustering algorithms. Fuzzy Sets and Systems 5 (1981) 177-185
    • (1981) Fuzzy Sets and Systems , vol.5 , pp. 177-185
    • Windham, M.P.1
  • 24
    • 33747113980 scopus 로고
    • Diffraction theory of the cut procedure and its improved form, the phase contrast method
    • Zernike F. Diffraction theory of the cut procedure and its improved form, the phase contrast method. Physica 1 (1934) 689-704
    • (1934) Physica , vol.1 , pp. 689-704
    • Zernike, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.