메뉴 건너뛰기




Volumn , Issue , 2008, Pages 5-10

Designing fuzzy rule-based classifiers that can visually explain their classification results to human users

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTERIZED TOMOGRAPHY; DIESEL ENGINES; FEATURE EXTRACTION; FUZZY LOGIC; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; GENETIC ALGORITHMS; LEARNING SYSTEMS; PHASE INTERFACES; SOLUTE TRANSPORT; SUPPORT VECTOR MACHINES; TWO DIMENSIONAL;

EID: 50149113263     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GEFS.2008.4484559     Document Type: Conference Paper
Times cited : (14)

References (26)
  • 1
    • 0037597549 scopus 로고    scopus 로고
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena eds, Springer, Berlin
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (eds.), Interpretability Issues in Fuzzy Modeling, Springer, Berlin, 2003.
    • (2003) Interpretability Issues in Fuzzy Modeling
  • 2
    • 3543069982 scopus 로고    scopus 로고
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena eds, Springer, Berlin
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena (eds.), Accuracy Improvements in Linguistic Fuzzy Modeling, Springer, Berlin, 2003.
    • (2003) Accuracy Improvements in Linguistic Fuzzy Modeling
  • 3
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • August
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, "Selecting fuzzy if-then rules for classification problems using genetic algorithms," IEEE Trans. on Fuzzy Systems 3 (3), pp. 260-270, August 1995.
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 4
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • April
    • Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement," IEEE Trans. on Fuzzy Systems 8 (2), pp. 212-221, April 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 5
    • 0034294243 scopus 로고    scopus 로고
    • GA-based modeling and classification: Complexity and performance
    • October
    • M. Setnes and H. Roubos, "GA-based modeling and classification: Complexity and performance," IEEE Trans. on Fuzzy Systems 8 (5), pp. 509-522, October 2000.
    • (2000) IEEE Trans. on Fuzzy Systems , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 7
    • 0346781553 scopus 로고    scopus 로고
    • Ten years of genetic fuzzy systems: Current framework and new trends
    • January
    • O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, "Ten years of genetic fuzzy systems: Current framework and new trends," Fuzzy Sets and Systems 141 (1), pp. 5-31, January 2004.
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 5-31
    • Cordon, O.1    Gomide, F.2    Herrera, F.3    Hoffmann, F.4    Magdalena, L.5
  • 8
    • 33748894279 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Status, critical considerations and future directions
    • December
    • F. Herrera, "Genetic fuzzy systems: Status, critical considerations and future directions," International Journal of Computational Intelligence Research 1(1), pp. 59-67, December 2005.
    • (2005) International Journal of Computational Intelligence Research , vol.1 , Issue.1 , pp. 59-67
    • Herrera, F.1
  • 9
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • July
    • H. Ishibuchi, T. Murata, and I. B. Turksen, "Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems," Fuzzy Sets and Systems 89 (2), pp. 135-150, July 1997.
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.2 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 10
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • August
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Information Sciences 136(1-4), pp. 109-133, August 2001.
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 11
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • January
    • H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets and Systems 141 (1), pp. 59-88, January 2004.
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 12
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • January
    • H. Ishibuchi and Y. Nojima, "Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning," International Journal of Approximate Reasoning 44 (1), pp. 4-31, January 2007.
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 14
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • June
    • D. Nauck and R. Kruse, "Obtaining interpretable fuzzy classification rules from medical data," Artificial Intelligence in Medicine 16 (2), pp. 149-169, June 1999.
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 15
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • June
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability-oriented review," IEEE Trans. on Fuzzy Systems 9 (3), pp. 426-443, June 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 16
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems
    • March
    • R. Mikut, J. Jakel, and L. Groll, "Interpretability issues in data-based learning of fuzzy systems," Fuzzy Sets and Systems 150 (2), pp. 179-197, March 2005.
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 179-197
    • Mikut, R.1    Jakel, J.2    Groll, L.3
  • 17
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • November
    • H. Ishibuchi, K. Nozaki, and H. Tanaka, "Distributed representation of fuzzy rules and its application to pattern classification," Fuzzy Sets and Systems 52 (1), pp. 21-32, November 1992.
    • (1992) Fuzzy Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 18
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • January
    • O. Cordon, M. J. del Jesus, and F. Herrera, "A proposal on reasoning methods in fuzzy rule-based classification systems," International Journal of Approximate Reasoning 20 (1), pp. 21-45, January 1999.
    • (1999) International Journal of Approximate Reasoning , vol.20 , Issue.1 , pp. 21-45
    • Cordon, O.1    del Jesus, M.J.2    Herrera, F.3
  • 19
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • April
    • H. Ishibuchi, T. Nakashima, and T. Morisawa, "Voting in fuzzy rule-based systems for pattern classification problems," Fuzzy Sets and Systems 103 (2), pp. 223-238, April 1999.
    • (1999) Fuzzy Sets and Systems , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 22
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multi-dimensional pattern classification problems
    • October
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Performance evaluation of fuzzy classifier systems for multi-dimensional pattern classification problems," IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics 29 (5), pp. 601-618, October 1999.
    • (1999) IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics , vol.29 , Issue.5 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 23
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • August
    • H. Ishibuchi and T. Yamamoto, "Rule weight specification in fuzzy rule-based classification systems," IEEE Trans. on Fuzzy Systems 13 (4), pp. 428-435, August 2005.
    • (2005) IEEE Trans. on Fuzzy Systems , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 24
    • 0035415473 scopus 로고    scopus 로고
    • Effect of rule weights in fuzzy rule-based classification systems
    • August
    • H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rule-based classification systems," IEEE Trans. on Fuzzy Systems 9 (4), pp. 506-515, August 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.4 , pp. 506-515
    • Ishibuchi, H.1    Nakashima, T.2
  • 25
    • 3543091439 scopus 로고    scopus 로고
    • Comparison of heuristic criteria for fuzzy rule selection in classification problems
    • June
    • H. Ishibuchi and T. Yamamoto, "Comparison of heuristic criteria for fuzzy rule selection in classification problems," Fuzzy Optimization and Decision Making 3 (2), pp. 119-139, June 2004.
    • (2004) Fuzzy Optimization and Decision Making , vol.3 , Issue.2 , pp. 119-139
    • Ishibuchi, H.1    Yamamoto, T.2
  • 26
    • 0001371923 scopus 로고    scopus 로고
    • Fast discovery of association rules
    • U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy eds, AAAI Press, Menlo Park, pp
    • R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, "Fast discovery of association rules," in U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.), Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, pp. 307-328, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 307-328
    • Agrawal, R.1    Mannila, H.2    Srikant, R.3    Toivonen, H.4    Verkamo, A.I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.