메뉴 건너뛰기




Volumn , Issue , 2007, Pages 99-102

Mass lesions classification in digital mammography using optimal subset of BI-RADS and gray level features

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); MAMMOGRAPHY; SUPPORT VECTOR MACHINES; X RAY SCREENS;

EID: 50049087933     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITAB.2007.4407354     Document Type: Conference Paper
Times cited : (6)

References (16)
  • 2
    • 0029095797 scopus 로고
    • Breast Cancer: Prediction with Artificial Neural Network Based on Bi-Rads Standardized Lexicon
    • J.A. Bker et al., Breast Cancer: Prediction with Artificial Neural Network Based on Bi-Rads Standardized Lexicon, Radiology, 196: 817-822, 1995.
    • (1995) Radiology , vol.196 , pp. 817-822
    • Bker, J.A.1
  • 3
    • 0032081270 scopus 로고    scopus 로고
    • Linear and Neural Models for Classifying Breast Masses
    • D.B. Fogel et al. Linear and Neural Models for Classifying Breast Masses. IEEE Trans. on Medical Imaging, 17(3): 485-488, 1998.
    • (1998) IEEE Trans. on Medical Imaging , vol.17 , Issue.3 , pp. 485-488
    • Fogel, D.B.1
  • 4
    • 0037002322 scopus 로고    scopus 로고
    • A Support. Vector Machine Approach for Detection of Microcalcifications
    • I. El-Naqa et al., A Support. Vector Machine Approach for Detection of Microcalcifications, IEEE Trans. on Medical Imaging. 21(12): 1552-1563, 2002.
    • (2002) IEEE Trans. on Medical Imaging , vol.21 , Issue.12 , pp. 1552-1563
    • El-Naqa, I.1
  • 5
    • 4544220357 scopus 로고    scopus 로고
    • Applying support vector machines to breast cancer diagonosis using screen film mammogram data
    • W. Land Jr. et al., Applying support vector machines to breast cancer diagonosis using screen film mammogram data. IEEE Symp. on CBMS '04, 2004.
    • (2004) IEEE Symp. on CBMS '04
    • Land Jr., W.1
  • 6
    • 19044383038 scopus 로고    scopus 로고
    • L. Wei et al., A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications, IEEE Trans. on Medical Imaging, 24:371-380, 2005.
    • L. Wei et al., A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications," IEEE Trans. on Medical Imaging, 24:371-380, 2005.
  • 7
    • 33746354038 scopus 로고    scopus 로고
    • Computerized classification can reduce unnecessary biopsies in Bi-Rads category 4A lesions
    • L. Isaac et al, Computerized classification can reduce unnecessary biopsies in Bi-Rads category 4A lesions. International Workshop on Digital Mammography, 76-83, 2006.
    • (2006) International Workshop on Digital Mammography , pp. 76-83
    • Isaac, L.1
  • 8
    • 0034871408 scopus 로고    scopus 로고
    • Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications
    • Y. Jiang et al., Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications. Radiology, 220:787-794, 2001.
    • (2001) Radiology , vol.220 , pp. 787-794
    • Jiang, Y.1
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using SVM
    • I. Guyon et al. Gene selection for cancer classification using SVM. Mach. Learning, 46:389-422, 2002.
    • (2002) Mach. Learning , vol.46 , pp. 389-422
    • Guyon, I.1
  • 11
    • 33646377650 scopus 로고    scopus 로고
    • Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
    • X. Zhang et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7(197), 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.197
    • Zhang, X.1
  • 12
    • 50049089005 scopus 로고    scopus 로고
    • Breast Imaging- Reporting and Data System (BI-RADS). American College of Radiology, Reston, VA, 1998.
    • Breast Imaging- Reporting and Data System (BI-RADS). American College of Radiology, Reston, VA, 1998.
  • 13
    • 0033005259 scopus 로고    scopus 로고
    • Bi-Rads categorization as a predictor of malignancy
    • S.G. Orel et al, Bi-Rads categorization as a predictor of malignancy. Radiology, 211:845-850, 1999.
    • (1999) Radiology , vol.211 , pp. 845-850
    • Orel, S.G.1
  • 15
    • 17444397485 scopus 로고    scopus 로고
    • Neural vs. statistical classification in conjunction with genetic algorithm based feature selection
    • P. Zhang et al., Neural vs. statistical classification in conjunction with genetic algorithm based feature selection. Pattern Recognition Letters, 26(7): 909-919, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 909-919
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.