메뉴 건너뛰기




Volumn 25, Issue 7, 2008, Pages 529-541

A unified approach to resultant matrices for Bernstein basis polynomials

Author keywords

Bernstein basis polynomials; Resultant matrices

Indexed keywords

AMBER; COMPUTER AIDED DESIGN; MATRIX ALGEBRA; POLYNOMIAL APPROXIMATION; STANDARDIZATION; STANDARDS;

EID: 49949086072     PISSN: 01678396     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cagd.2007.09.004     Document Type: Article
Times cited : (7)

References (16)
  • 2
    • 38249031267 scopus 로고
    • Euclidean remainders for generalized polynomials
    • Barnett S. Euclidean remainders for generalized polynomials. Linear Algebra Appl. 99 (1988) 111-122
    • (1988) Linear Algebra Appl. , vol.99 , pp. 111-122
    • Barnett, S.1
  • 4
    • 26644461682 scopus 로고    scopus 로고
    • Structured matrix methods for CAGD: An application to computing the resultant of polynomials in the Bernstein basis
    • Bini D.A., Gemignani L., and Winkler J.R. Structured matrix methods for CAGD: An application to computing the resultant of polynomials in the Bernstein basis. Numer. Linear Algebra Appl. 12 (2005) 685-698
    • (2005) Numer. Linear Algebra Appl. , vol.12 , pp. 685-698
    • Bini, D.A.1    Gemignani, L.2    Winkler, J.R.3
  • 5
    • 49949091929 scopus 로고    scopus 로고
    • Cardinal, J.P., 1996. On two iterative methods for approximating the roots of a polynomial. In: Renegar, J., Shub, M., Smale, S. (Eds.), The Mathematics of Numerical Analysis, Lecture Notes in Applied Mathematics, vol. 32, pp. 165-188
    • Cardinal, J.P., 1996. On two iterative methods for approximating the roots of a polynomial. In: Renegar, J., Shub, M., Smale, S. (Eds.), The Mathematics of Numerical Analysis, Lecture Notes in Applied Mathematics, vol. 32, pp. 165-188
  • 6
    • 0000140960 scopus 로고
    • Vector elimination: A technique for the implicitization, inversion and intersection of planar parametric rational polynomial curves
    • Goldman R.N., Sederberg T.W., and Anderson D.C. Vector elimination: A technique for the implicitization, inversion and intersection of planar parametric rational polynomial curves. Comput. Aided Geom. Design 1 (1984) 327-356
    • (1984) Comput. Aided Geom. Design , vol.1 , pp. 327-356
    • Goldman, R.N.1    Sederberg, T.W.2    Anderson, D.C.3
  • 7
    • 0002039614 scopus 로고
    • The Cayley method in computer aided geometric design
    • De Montaudouin Y., and Tiller W. The Cayley method in computer aided geometric design. Comput. Aided Geom. Design 1 (1984) 309-326
    • (1984) Comput. Aided Geom. Design , vol.1 , pp. 309-326
    • De Montaudouin, Y.1    Tiller, W.2
  • 8
    • 0000692349 scopus 로고    scopus 로고
    • Multivariate polynomials, duality and structured matrices
    • Mourrain B., and Pan V.Y. Multivariate polynomials, duality and structured matrices. J. Complexity 16 (2000) 110-180
    • (2000) J. Complexity , vol.16 , pp. 110-180
    • Mourrain, B.1    Pan, V.Y.2
  • 9
    • 84867960648 scopus 로고    scopus 로고
    • A companion matrix resultant for Bernstein polynomials
    • Winkler J.R. A companion matrix resultant for Bernstein polynomials. Linear Algebra Appl. 362 (2003) 153-175
    • (2003) Linear Algebra Appl. , vol.362 , pp. 153-175
    • Winkler, J.R.1
  • 10
    • 0346724613 scopus 로고    scopus 로고
    • The transformation of the companion matrix resultant between the power and Bernstein polynomial bases
    • Winkler J.R. The transformation of the companion matrix resultant between the power and Bernstein polynomial bases. Appl. Numer. Math. 48 1 (2004) 113-126
    • (2004) Appl. Numer. Math. , vol.48 , Issue.1 , pp. 113-126
    • Winkler, J.R.1
  • 11
    • 27744567249 scopus 로고    scopus 로고
    • Numerical and algebraic properties of Bernstein basis resultant matrices
    • Dokken T., and Jüttler B. (Eds), Springer-Verlag, Berlin
    • Winkler J.R. Numerical and algebraic properties of Bernstein basis resultant matrices. In: Dokken T., and Jüttler B. (Eds). Computational Methods for Algebraic Spline Surfaces (2005), Springer-Verlag, Berlin 107-118
    • (2005) Computational Methods for Algebraic Spline Surfaces , pp. 107-118
    • Winkler, J.R.1
  • 12
    • 33644866180 scopus 로고    scopus 로고
    • The numerical condition of univariate and bivariate degree elevated Bernstein polynomials
    • Winkler J.R. The numerical condition of univariate and bivariate degree elevated Bernstein polynomials. J. Comp. Appl. Math. 191 1 (2006) 32-49
    • (2006) J. Comp. Appl. Math. , vol.191 , Issue.1 , pp. 32-49
    • Winkler, J.R.1
  • 13
    • 49949118849 scopus 로고    scopus 로고
    • Winkler, J.R., Allan, J.D., 2007a. Structured low rank approximations of the Sylvester resultant matrix for approximate GCDs of Bernstein polynomials. Submitted for publication
    • Winkler, J.R., Allan, J.D., 2007a. Structured low rank approximations of the Sylvester resultant matrix for approximate GCDs of Bernstein polynomials. Submitted for publication
  • 14
    • 49949109513 scopus 로고    scopus 로고
    • Winkler, J.R., Allan, J.D., 2007b. Structured total least norm and approximate GCDs of inexact polynomials. J. Comput. Appl. Math., in press
    • Winkler, J.R., Allan, J.D., 2007b. Structured total least norm and approximate GCDs of inexact polynomials. J. Comput. Appl. Math., in press
  • 15
    • 0347610077 scopus 로고    scopus 로고
    • The Sylvester resultant matrix for Bernstein polynomials
    • Lyche T., Mazure M., and Schumaker L.L. (Eds). Saint-Malo, 2002, Nashboro Press, Tennessee
    • Winkler J.R., and Goldman R.N. The Sylvester resultant matrix for Bernstein polynomials. In: Lyche T., Mazure M., and Schumaker L.L. (Eds). Curve and Surface Design. Saint-Malo, 2002 (2003), Nashboro Press, Tennessee 407-416
    • (2003) Curve and Surface Design , pp. 407-416
    • Winkler, J.R.1    Goldman, R.N.2
  • 16
    • 14944343328 scopus 로고    scopus 로고
    • Computing multiple roots of inexact polynomials
    • Zeng Z. Computing multiple roots of inexact polynomials. Math. Comput. 74 (2005) 869-903
    • (2005) Math. Comput. , vol.74 , pp. 869-903
    • Zeng, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.