-
1
-
-
49849098372
-
-
S. Baluja, Population-based incremental learning - a method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University, 1994, CMU-CS-94-163.
-
S. Baluja, Population-based incremental learning - a method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University, 1994, CMU-CS-94-163.
-
-
-
-
2
-
-
34548060410
-
-
J. Branke, C. Lode, J.L. Shapiro, Addressing sampling errors and diversity loss in UMDA, in: Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference, 2007, pp. 508-515.
-
J. Branke, C. Lode, J.L. Shapiro, Addressing sampling errors and diversity loss in UMDA, in: Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference, 2007, pp. 508-515.
-
-
-
-
4
-
-
51749123988
-
-
K.A. Folly, Robust controller design based on a combination of genetic algorithms and competitive learning, in: International Joint Conference on Neural Networks, 2007, pp. 3045-3050.
-
K.A. Folly, Robust controller design based on a combination of genetic algorithms and competitive learning, in: International Joint Conference on Neural Networks, 2007, pp. 3045-3050.
-
-
-
-
5
-
-
0000904077
-
Messy genetic algorithms: motivation, analysis, and first results
-
Goldberg D., Korb B., and Deb K. Messy genetic algorithms: motivation, analysis, and first results. Complex Systems 3 (1989) 493-530
-
(1989)
Complex Systems
, vol.3
, pp. 493-530
-
-
Goldberg, D.1
Korb, B.2
Deb, K.3
-
6
-
-
49849088930
-
-
T. Gosling, J. Nanlin, E. Tsang, Population-based incremental learning versus genetic algorithms: iterated prisoners dilemma. Technical report, University of Essex, 2004.
-
T. Gosling, J. Nanlin, E. Tsang, Population-based incremental learning versus genetic algorithms: iterated prisoners dilemma. Technical report, University of Essex, 2004.
-
-
-
-
8
-
-
0030704147
-
-
M. Hohfeld, G. Rudolph, Towards a theory of population-based incremental learning, in: Proceedings of the 4th IEEE Conference on Evolutionary Computation, 1997, pp. 1-5.
-
M. Hohfeld, G. Rudolph, Towards a theory of population-based incremental learning, in: Proceedings of the 4th IEEE Conference on Evolutionary Computation, 1997, pp. 1-5.
-
-
-
-
9
-
-
48349129954
-
-
Q. Jiang, Y. Ou, D. Shi-Du, Optimizing curriculum scheduling problem using population-based incremental learning algorithm, in: Second Workshop on Digital Media and its Application in Museum and Heritages, 2007, pp. 448-453.
-
Q. Jiang, Y. Ou, D. Shi-Du, Optimizing curriculum scheduling problem using population-based incremental learning algorithm, in: Second Workshop on Digital Media and its Application in Museum and Heritages, 2007, pp. 448-453.
-
-
-
-
11
-
-
0003191287
-
Syntactic analysis of convergence in genetic algorithms
-
Whitley L.D. (Ed), Morgan Kaufmann
-
Louis S.J., and Rawlins G.J.E. Syntactic analysis of convergence in genetic algorithms. In: Whitley L.D. (Ed). Foundations of Genetic Algorithms 2 (1993), Morgan Kaufmann 141-151
-
(1993)
Foundations of Genetic Algorithms 2
, pp. 141-151
-
-
Louis, S.J.1
Rawlins, G.J.E.2
-
13
-
-
55549116337
-
-
I. Petrovska, J.N. Carter, Using population-based incremental learning algorithm to quantify the uncertainty in model parameters, in: 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC, 2007.
-
I. Petrovska, J.N. Carter, Using population-based incremental learning algorithm to quantify the uncertainty in model parameters, in: 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC, 2007.
-
-
-
-
14
-
-
49849095946
-
-
S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms, in: IEEE Congress on Evolutionary Computation, 2006, pp. 7363-7370.
-
S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms, in: IEEE Congress on Evolutionary Computation, 2006, pp. 7363-7370.
-
-
-
-
15
-
-
49849102664
-
-
S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms for optimization of noisy problems, in: IEEE Congress on Evolutionary Computation, 2006, pp. 6756-6763.
-
S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms for optimization of noisy problems, in: IEEE Congress on Evolutionary Computation, 2006, pp. 6756-6763.
-
-
-
-
16
-
-
33745213150
-
The population-based incremental learning algorithm converges to local optima
-
Rastegar R., and Hariri A. The population-based incremental learning algorithm converges to local optima. Neurocomputing 69 13-15 (2006) 1772-1775
-
(2006)
Neurocomputing
, vol.69
, Issue.13-15
, pp. 1772-1775
-
-
Rastegar, R.1
Hariri, A.2
-
17
-
-
33845879324
-
-
R. Rastegar, A. Hariri, M. Mazoochi, A convergence proof for the population-based incremental learning algorithm, in: Seventeenth IEEE International Conference on Tools with Artificial Intelligence, 2005, pp. 387-391.
-
R. Rastegar, A. Hariri, M. Mazoochi, A convergence proof for the population-based incremental learning algorithm, in: Seventeenth IEEE International Conference on Tools with Artificial Intelligence, 2005, pp. 387-391.
-
-
-
-
19
-
-
84878615636
-
Extending population-based incremental learning to continuous search spaces
-
Sebag M., and Ducoulombier A. Extending population-based incremental learning to continuous search spaces. Lecture Notes in Computer Science 1498 (1998) 418-427
-
(1998)
Lecture Notes in Computer Science
, vol.1498
, pp. 418-427
-
-
Sebag, M.1
Ducoulombier, A.2
-
20
-
-
33750227208
-
-
J.L. Shapiro, Diversity loss in general estimation of distribution algorithms, in: Parallel Problem Solving from Nature IX, 2006, pp. 92-101.
-
J.L. Shapiro, Diversity loss in general estimation of distribution algorithms, in: Parallel Problem Solving from Nature IX, 2006, pp. 92-101.
-
-
-
-
21
-
-
40649087190
-
-
M. Shokri, H.R. Tizhoosh, M. Kamel, Opposition-based Q(lambda) Algorithm, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 646-653.
-
M. Shokri, H.R. Tizhoosh, M. Kamel, Opposition-based Q(lambda) Algorithm, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 646-653.
-
-
-
-
22
-
-
0033308423
-
-
F. Southey, F. Karray, Approaching evolutionary robotics through population-based incremental learning, in: IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, 1999, pp. 710-715.
-
F. Southey, F. Karray, Approaching evolutionary robotics through population-based incremental learning, in: IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, 1999, pp. 710-715.
-
-
-
-
23
-
-
70449353259
-
Oppositional concepts in computational intelligence
-
Tizhoosh H., and Ventresca M. (Eds), Springer-Verlag
-
Shokri M., Tizhoosh H.R., and Kamel M. Oppositional concepts in computational intelligence. In: Tizhoosh H., and Ventresca M. (Eds). Studies in Computational Intelligence Vol. 155 (2008), Springer-Verlag
-
(2008)
Studies in Computational Intelligence
, vol.155
-
-
Shokri, M.1
Tizhoosh, H.R.2
Kamel, M.3
-
24
-
-
49849105470
-
-
H.R. Tizhoosh, Reinforcement learning based on actions and opposite actions, in: International Conference on Artificial Intelligence and Machine Learning, 2005.
-
H.R. Tizhoosh, Reinforcement learning based on actions and opposite actions, in: International Conference on Artificial Intelligence and Machine Learning, 2005.
-
-
-
-
26
-
-
49849098121
-
-
TSPLIB. .
-
TSPLIB. .
-
-
-
-
27
-
-
34548089266
-
-
M. Vega-Rodriguez, D. Vega-Perez, J. Gomez-Pulido, J. Sanchez-Perez, Radio network design using population-based incremental learning and grid computing with boinc, in: Applications of Evolutionary Computing, vol. 4448/2007 of Lecture Notes in Computer Science, 2007, pp. 91-100.
-
M. Vega-Rodriguez, D. Vega-Perez, J. Gomez-Pulido, J. Sanchez-Perez, Radio network design using population-based incremental learning and grid computing with boinc, in: Applications of Evolutionary Computing, vol. 4448/2007 of Lecture Notes in Computer Science, 2007, pp. 91-100.
-
-
-
-
28
-
-
40649105258
-
-
M. Ventresca, H.R. Tizhoosh, Improving the convergence of backpropagation by opposite transfer functions, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 9527-9534.
-
M. Ventresca, H.R. Tizhoosh, Improving the convergence of backpropagation by opposite transfer functions, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 9527-9534.
-
-
-
-
29
-
-
34548819318
-
-
M. Ventresca, H.R. Tizhoosh, Opposite transfer functions and backpropagation through time, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 570-577.
-
M. Ventresca, H.R. Tizhoosh, Opposite transfer functions and backpropagation through time, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 570-577.
-
-
-
-
30
-
-
34548822404
-
-
M. Ventresca, H.R. Tizhoosh, Simulated annealing with opposite neighbors, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 186-192.
-
M. Ventresca, H.R. Tizhoosh, Simulated annealing with opposite neighbors, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 186-192.
-
-
-
-
31
-
-
49849097186
-
-
Dictionary.com Unabridged (v 1.1). opposition. (n.d.). (Retrieved February 19, 2007, from Dictionary.com).
-
Dictionary.com Unabridged (v 1.1). opposition. (n.d.). (Retrieved February 19, 2007, from Dictionary.com).
-
-
-
-
32
-
-
0000129604
-
Fundamental principles of deception in genetic search
-
Rawlins G. (Ed), Morgan Kaufmann
-
Whitley D. Fundamental principles of deception in genetic search. In: Rawlins G. (Ed). Foundations of Genetic Algorithms (1991), Morgan Kaufmann 221-241
-
(1991)
Foundations of Genetic Algorithms
, pp. 221-241
-
-
Whitley, D.1
-
33
-
-
1542748769
-
-
M. Wineberg, F. Oppacher, Metrics for population comparisons in evolutionary computation systems, Intelligent Systems and Control, 2003.
-
M. Wineberg, F. Oppacher, Metrics for population comparisons in evolutionary computation systems, Intelligent Systems and Control, 2003.
-
-
-
-
34
-
-
33947662522
-
A new implementation of population-based incremental learning method for optimizations in electromagnetics
-
Yang S.Y., Ho S.L., Ni G.Z., Machado J.M., and Wong K.F. A new implementation of population-based incremental learning method for optimizations in electromagnetics. IEEE Transactions on Magnetics 43 4 (2007) 1601-1604
-
(2007)
IEEE Transactions on Magnetics
, vol.43
, Issue.4
, pp. 1601-1604
-
-
Yang, S.Y.1
Ho, S.L.2
Ni, G.Z.3
Machado, J.M.4
Wong, K.F.5
-
35
-
-
27144484035
-
Experimental study on population-based incremental learning algorithms for dynamic optimization problems
-
Yang S., and Yao X. Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9 11 (2005) 815-834
-
(2005)
Soft Computing - A Fusion of Foundations, Methodologies and Applications
, vol.9
, Issue.11
, pp. 815-834
-
-
Yang, S.1
Yao, X.2
-
36
-
-
32444441242
-
-
B. Yuan, M. Gallagher, On the importance of diversity maintenance in estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2005, pp. 719-726.
-
B. Yuan, M. Gallagher, On the importance of diversity maintenance in estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2005, pp. 719-726.
-
-
-
-
37
-
-
38049061657
-
-
Q. Zhang, T. Wu, B. Liu, A population-based incremental learning algorithm with elitist strategy, in: Third International Conference on Natural Computation, 2007, pp. 583-587.
-
Q. Zhang, T. Wu, B. Liu, A population-based incremental learning algorithm with elitist strategy, in: Third International Conference on Natural Computation, 2007, pp. 583-587.
-
-
-
-
38
-
-
23044461818
-
Empirical study of population diversity in permutation-based genetic algorithm
-
Zhu K., and Liu Z. Empirical study of population diversity in permutation-based genetic algorithm. Lecture Notes in Computer Science 3201 (2004) 537-547
-
(2004)
Lecture Notes in Computer Science
, vol.3201
, pp. 537-547
-
-
Zhu, K.1
Liu, Z.2
|