메뉴 건너뛰기




Volumn 178, Issue 21, 2008, Pages 4038-4056

A diversity maintaining population-based incremental learning algorithm

Author keywords

Diversity control; Diversity maintenance; Opposition based computing; Population based incremental learning

Indexed keywords

BENCHMARKING; EDUCATION; LEARNING SYSTEMS; POPULATION STATISTICS; PROBABILITY;

EID: 49849096836     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2008.07.005     Document Type: Article
Times cited : (53)

References (38)
  • 1
    • 49849098372 scopus 로고    scopus 로고
    • S. Baluja, Population-based incremental learning - a method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University, 1994, CMU-CS-94-163.
    • S. Baluja, Population-based incremental learning - a method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University, 1994, CMU-CS-94-163.
  • 2
    • 34548060410 scopus 로고    scopus 로고
    • J. Branke, C. Lode, J.L. Shapiro, Addressing sampling errors and diversity loss in UMDA, in: Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference, 2007, pp. 508-515.
    • J. Branke, C. Lode, J.L. Shapiro, Addressing sampling errors and diversity loss in UMDA, in: Proceedings of the 9th Annual Genetic and Evolutionary Computation Conference, 2007, pp. 508-515.
  • 4
    • 51749123988 scopus 로고    scopus 로고
    • K.A. Folly, Robust controller design based on a combination of genetic algorithms and competitive learning, in: International Joint Conference on Neural Networks, 2007, pp. 3045-3050.
    • K.A. Folly, Robust controller design based on a combination of genetic algorithms and competitive learning, in: International Joint Conference on Neural Networks, 2007, pp. 3045-3050.
  • 5
    • 0000904077 scopus 로고
    • Messy genetic algorithms: motivation, analysis, and first results
    • Goldberg D., Korb B., and Deb K. Messy genetic algorithms: motivation, analysis, and first results. Complex Systems 3 (1989) 493-530
    • (1989) Complex Systems , vol.3 , pp. 493-530
    • Goldberg, D.1    Korb, B.2    Deb, K.3
  • 6
    • 49849088930 scopus 로고    scopus 로고
    • T. Gosling, J. Nanlin, E. Tsang, Population-based incremental learning versus genetic algorithms: iterated prisoners dilemma. Technical report, University of Essex, 2004.
    • T. Gosling, J. Nanlin, E. Tsang, Population-based incremental learning versus genetic algorithms: iterated prisoners dilemma. Technical report, University of Essex, 2004.
  • 8
    • 0030704147 scopus 로고    scopus 로고
    • M. Hohfeld, G. Rudolph, Towards a theory of population-based incremental learning, in: Proceedings of the 4th IEEE Conference on Evolutionary Computation, 1997, pp. 1-5.
    • M. Hohfeld, G. Rudolph, Towards a theory of population-based incremental learning, in: Proceedings of the 4th IEEE Conference on Evolutionary Computation, 1997, pp. 1-5.
  • 9
    • 48349129954 scopus 로고    scopus 로고
    • Q. Jiang, Y. Ou, D. Shi-Du, Optimizing curriculum scheduling problem using population-based incremental learning algorithm, in: Second Workshop on Digital Media and its Application in Museum and Heritages, 2007, pp. 448-453.
    • Q. Jiang, Y. Ou, D. Shi-Du, Optimizing curriculum scheduling problem using population-based incremental learning algorithm, in: Second Workshop on Digital Media and its Application in Museum and Heritages, 2007, pp. 448-453.
  • 11
    • 0003191287 scopus 로고
    • Syntactic analysis of convergence in genetic algorithms
    • Whitley L.D. (Ed), Morgan Kaufmann
    • Louis S.J., and Rawlins G.J.E. Syntactic analysis of convergence in genetic algorithms. In: Whitley L.D. (Ed). Foundations of Genetic Algorithms 2 (1993), Morgan Kaufmann 141-151
    • (1993) Foundations of Genetic Algorithms 2 , pp. 141-151
    • Louis, S.J.1    Rawlins, G.J.E.2
  • 13
    • 55549116337 scopus 로고    scopus 로고
    • I. Petrovska, J.N. Carter, Using population-based incremental learning algorithm to quantify the uncertainty in model parameters, in: 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC, 2007.
    • I. Petrovska, J.N. Carter, Using population-based incremental learning algorithm to quantify the uncertainty in model parameters, in: 69th EAGE Conference and Exhibition Incorporating SPE EUROPEC, 2007.
  • 14
    • 49849095946 scopus 로고    scopus 로고
    • S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms, in: IEEE Congress on Evolutionary Computation, 2006, pp. 7363-7370.
    • S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms, in: IEEE Congress on Evolutionary Computation, 2006, pp. 7363-7370.
  • 15
    • 49849102664 scopus 로고    scopus 로고
    • S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms for optimization of noisy problems, in: IEEE Congress on Evolutionary Computation, 2006, pp. 6756-6763.
    • S. Rahnamayn, H.R. Tizhoosh, S. Salama, Opposition-based differential evolution algorithms for optimization of noisy problems, in: IEEE Congress on Evolutionary Computation, 2006, pp. 6756-6763.
  • 16
    • 33745213150 scopus 로고    scopus 로고
    • The population-based incremental learning algorithm converges to local optima
    • Rastegar R., and Hariri A. The population-based incremental learning algorithm converges to local optima. Neurocomputing 69 13-15 (2006) 1772-1775
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1772-1775
    • Rastegar, R.1    Hariri, A.2
  • 17
    • 33845879324 scopus 로고    scopus 로고
    • R. Rastegar, A. Hariri, M. Mazoochi, A convergence proof for the population-based incremental learning algorithm, in: Seventeenth IEEE International Conference on Tools with Artificial Intelligence, 2005, pp. 387-391.
    • R. Rastegar, A. Hariri, M. Mazoochi, A convergence proof for the population-based incremental learning algorithm, in: Seventeenth IEEE International Conference on Tools with Artificial Intelligence, 2005, pp. 387-391.
  • 19
    • 84878615636 scopus 로고    scopus 로고
    • Extending population-based incremental learning to continuous search spaces
    • Sebag M., and Ducoulombier A. Extending population-based incremental learning to continuous search spaces. Lecture Notes in Computer Science 1498 (1998) 418-427
    • (1998) Lecture Notes in Computer Science , vol.1498 , pp. 418-427
    • Sebag, M.1    Ducoulombier, A.2
  • 20
    • 33750227208 scopus 로고    scopus 로고
    • J.L. Shapiro, Diversity loss in general estimation of distribution algorithms, in: Parallel Problem Solving from Nature IX, 2006, pp. 92-101.
    • J.L. Shapiro, Diversity loss in general estimation of distribution algorithms, in: Parallel Problem Solving from Nature IX, 2006, pp. 92-101.
  • 21
    • 40649087190 scopus 로고    scopus 로고
    • M. Shokri, H.R. Tizhoosh, M. Kamel, Opposition-based Q(lambda) Algorithm, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 646-653.
    • M. Shokri, H.R. Tizhoosh, M. Kamel, Opposition-based Q(lambda) Algorithm, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 646-653.
  • 22
    • 0033308423 scopus 로고    scopus 로고
    • F. Southey, F. Karray, Approaching evolutionary robotics through population-based incremental learning, in: IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, 1999, pp. 710-715.
    • F. Southey, F. Karray, Approaching evolutionary robotics through population-based incremental learning, in: IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, 1999, pp. 710-715.
  • 23
    • 70449353259 scopus 로고    scopus 로고
    • Oppositional concepts in computational intelligence
    • Tizhoosh H., and Ventresca M. (Eds), Springer-Verlag
    • Shokri M., Tizhoosh H.R., and Kamel M. Oppositional concepts in computational intelligence. In: Tizhoosh H., and Ventresca M. (Eds). Studies in Computational Intelligence Vol. 155 (2008), Springer-Verlag
    • (2008) Studies in Computational Intelligence , vol.155
    • Shokri, M.1    Tizhoosh, H.R.2    Kamel, M.3
  • 24
    • 49849105470 scopus 로고    scopus 로고
    • H.R. Tizhoosh, Reinforcement learning based on actions and opposite actions, in: International Conference on Artificial Intelligence and Machine Learning, 2005.
    • H.R. Tizhoosh, Reinforcement learning based on actions and opposite actions, in: International Conference on Artificial Intelligence and Machine Learning, 2005.
  • 26
    • 49849098121 scopus 로고    scopus 로고
    • TSPLIB. .
    • TSPLIB. .
  • 27
    • 34548089266 scopus 로고    scopus 로고
    • M. Vega-Rodriguez, D. Vega-Perez, J. Gomez-Pulido, J. Sanchez-Perez, Radio network design using population-based incremental learning and grid computing with boinc, in: Applications of Evolutionary Computing, vol. 4448/2007 of Lecture Notes in Computer Science, 2007, pp. 91-100.
    • M. Vega-Rodriguez, D. Vega-Perez, J. Gomez-Pulido, J. Sanchez-Perez, Radio network design using population-based incremental learning and grid computing with boinc, in: Applications of Evolutionary Computing, vol. 4448/2007 of Lecture Notes in Computer Science, 2007, pp. 91-100.
  • 28
    • 40649105258 scopus 로고    scopus 로고
    • M. Ventresca, H.R. Tizhoosh, Improving the convergence of backpropagation by opposite transfer functions, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 9527-9534.
    • M. Ventresca, H.R. Tizhoosh, Improving the convergence of backpropagation by opposite transfer functions, in: IEEE International Joint Conference on Neural Networks, 2006, pp. 9527-9534.
  • 29
    • 34548819318 scopus 로고    scopus 로고
    • M. Ventresca, H.R. Tizhoosh, Opposite transfer functions and backpropagation through time, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 570-577.
    • M. Ventresca, H.R. Tizhoosh, Opposite transfer functions and backpropagation through time, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 570-577.
  • 30
    • 34548822404 scopus 로고    scopus 로고
    • M. Ventresca, H.R. Tizhoosh, Simulated annealing with opposite neighbors, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 186-192.
    • M. Ventresca, H.R. Tizhoosh, Simulated annealing with opposite neighbors, in: IEEE Symposium on Foundations of Computational Intelligence, 2007, pp. 186-192.
  • 31
    • 49849097186 scopus 로고    scopus 로고
    • Dictionary.com Unabridged (v 1.1). opposition. (n.d.). (Retrieved February 19, 2007, from Dictionary.com).
    • Dictionary.com Unabridged (v 1.1). opposition. (n.d.). (Retrieved February 19, 2007, from Dictionary.com).
  • 32
    • 0000129604 scopus 로고
    • Fundamental principles of deception in genetic search
    • Rawlins G. (Ed), Morgan Kaufmann
    • Whitley D. Fundamental principles of deception in genetic search. In: Rawlins G. (Ed). Foundations of Genetic Algorithms (1991), Morgan Kaufmann 221-241
    • (1991) Foundations of Genetic Algorithms , pp. 221-241
    • Whitley, D.1
  • 33
    • 1542748769 scopus 로고    scopus 로고
    • M. Wineberg, F. Oppacher, Metrics for population comparisons in evolutionary computation systems, Intelligent Systems and Control, 2003.
    • M. Wineberg, F. Oppacher, Metrics for population comparisons in evolutionary computation systems, Intelligent Systems and Control, 2003.
  • 34
    • 33947662522 scopus 로고    scopus 로고
    • A new implementation of population-based incremental learning method for optimizations in electromagnetics
    • Yang S.Y., Ho S.L., Ni G.Z., Machado J.M., and Wong K.F. A new implementation of population-based incremental learning method for optimizations in electromagnetics. IEEE Transactions on Magnetics 43 4 (2007) 1601-1604
    • (2007) IEEE Transactions on Magnetics , vol.43 , Issue.4 , pp. 1601-1604
    • Yang, S.Y.1    Ho, S.L.2    Ni, G.Z.3    Machado, J.M.4    Wong, K.F.5
  • 35
    • 27144484035 scopus 로고    scopus 로고
    • Experimental study on population-based incremental learning algorithms for dynamic optimization problems
    • Yang S., and Yao X. Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9 11 (2005) 815-834
    • (2005) Soft Computing - A Fusion of Foundations, Methodologies and Applications , vol.9 , Issue.11 , pp. 815-834
    • Yang, S.1    Yao, X.2
  • 36
    • 32444441242 scopus 로고    scopus 로고
    • B. Yuan, M. Gallagher, On the importance of diversity maintenance in estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2005, pp. 719-726.
    • B. Yuan, M. Gallagher, On the importance of diversity maintenance in estimation of distribution algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2005, pp. 719-726.
  • 37
    • 38049061657 scopus 로고    scopus 로고
    • Q. Zhang, T. Wu, B. Liu, A population-based incremental learning algorithm with elitist strategy, in: Third International Conference on Natural Computation, 2007, pp. 583-587.
    • Q. Zhang, T. Wu, B. Liu, A population-based incremental learning algorithm with elitist strategy, in: Third International Conference on Natural Computation, 2007, pp. 583-587.
  • 38
    • 23044461818 scopus 로고    scopus 로고
    • Empirical study of population diversity in permutation-based genetic algorithm
    • Zhu K., and Liu Z. Empirical study of population diversity in permutation-based genetic algorithm. Lecture Notes in Computer Science 3201 (2004) 537-547
    • (2004) Lecture Notes in Computer Science , vol.3201 , pp. 537-547
    • Zhu, K.1    Liu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.