-
1
-
-
0035797869
-
-
0935-9648 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0. CO;2-Z, ();, Annu. Rev. Phys. Chem. 0066-426X 10.1146/annurev.physchem.54. 011002.103759 54, 331 (2003);, Adv. Mater. (Weinheim, Ger.) 0935-9648 10.1002/adma.200400271 16, 1685 (2004);, Science 113, 189 (2006). 0036-8075
-
S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. (Weinheim, Ger.) 0935-9648 10.1002/1521- 4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z 13, 1501 (2001); S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 0066-426X 10.1146/annurev.physchem. 54.011002.103759 54, 331 (2003); E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Ger.) 0935-9648 10.1002/adma.200400271 16, 1685 (2004); E. Ozbay, Science 113, 189 (2006). 0036-8075
-
(2001)
Adv. Mater. (Weinheim, Ger.)
, vol.13
, pp. 1501
-
-
Maier, S.A.1
Brongersma, M.L.2
Kik, P.G.3
Meltzer, S.4
Requicha, A.A.G.5
Atwater, H.A.6
Link, S.7
El-Sayed, M.A.8
Hutter, E.9
Fendler, J.H.10
Ozbay, E.11
-
3
-
-
22944432546
-
-
0021-8979 10.1063/1.1951057.
-
S. A. Maier and H. A. Atwater, J. Appl. Phys. 0021-8979 10.1063/1.1951057 98, 011101 (2005).
-
(2005)
J. Appl. Phys.
, vol.98
, pp. 011101
-
-
Maier, S.A.1
Atwater, H.A.2
-
4
-
-
8344281387
-
-
0036-8075 10.1126/science.1104976.
-
R. P. Van Duyne, Science 0036-8075 10.1126/science.1104976 306, 985 (2004).
-
(2004)
Science
, vol.306
, pp. 985
-
-
Van Duyne, R.P.1
-
5
-
-
31344478531
-
-
1071-1023 10.1116/1.1990161.
-
S. -W. Hla, J. Vac. Sci. Technol. B 1071-1023 10.1116/1.1990161 23, 1351 (2005).
-
(2005)
J. Vac. Sci. Technol. B
, vol.23
, pp. 1351
-
-
Hla, S.-W.1
-
9
-
-
33646424366
-
-
1530-6984 10.1021/nl0524896.
-
M. Sukharev and T. Seideman, Nano Lett. 1530-6984 10.1021/nl0524896 6, 715 (2006).
-
(2006)
Nano Lett.
, vol.6
, pp. 715
-
-
Sukharev, M.1
Seideman, T.2
-
10
-
-
34547647964
-
-
0021-9606 10.1063/1.2177651.
-
M. Sukharev and T. Seideman, J. Chem. Phys. 0021-9606 10.1063/1.2177651 124, 144707 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 144707
-
-
Sukharev, M.1
Seideman, T.2
-
11
-
-
34249690835
-
-
0953-4075 10.1088/0953-4075/40/11/S04.
-
M. Sukharev and T. Seideman, J. Phys. B 0953-4075 10.1088/0953-4075/40/ 11/S04 40, S283 (2007).
-
(2007)
J. Phys. B
, vol.40
, pp. 283
-
-
Sukharev, M.1
Seideman, T.2
-
13
-
-
34547873103
-
-
0031-9007 10.1103/PhysRevLett.99.063908.
-
J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.99.063908 99, 063908 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 063908
-
-
Hao, J.1
Yuan, Y.2
Ran, L.3
Jiang, T.4
Kong, J.A.5
Chan, C.T.6
Zhou, L.7
-
14
-
-
23144466610
-
-
1089-5647 10.1021/jp0521095.
-
N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, and B. N. Khlebtsov, J. Phys. Chem. B 1089-5647 10.1021/jp0521095 109, 13578 (2005).
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 13578
-
-
Khlebtsov, N.G.1
Melnikov, A.G.2
Bogatyrev, V.A.3
Dykman, L.A.4
Alekseeva, A.V.5
Trachuk, L.A.6
Khlebtsov, B.N.7
-
15
-
-
36148933824
-
-
0163-1829 10.1103/PhysRevB.76.184302.
-
M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, Phys. Rev. B 0163-1829 10.1103/PhysRevB.76.184302 76, 184302 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 184302
-
-
Sukharev, M.1
Sung, J.2
Spears, K.G.3
Seideman, T.4
-
16
-
-
41749094254
-
-
1932-7447
-
J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, J. Phys. Chem. C 112, 3252 (2008). 1932-7447
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 3252
-
-
Sung, J.1
Sukharev, M.2
Hicks, E.M.3
Van Duyne, R.P.4
Seideman, T.5
Spears, K.G.6
-
18
-
-
0042839565
-
-
0163-1829 10.1103/PhysRevB.68.045415.
-
S. K. Gray and T. Kupka, Phys. Rev. B 0163-1829 10.1103/PhysRevB.68. 045415 68, 045415 (2003).
-
(2003)
Phys. Rev. B
, vol.68
, pp. 045415
-
-
Gray, S.K.1
Kupka, T.2
-
20
-
-
49749151913
-
-
The parameters of the dielectric function of silver used in our simulations are ε∞ =8.926, ω=1.7601× 1016 rad/s, and =3.0841× 1014 rad/s.
-
The parameters of the dielectric function of silver used in our simulations are ε∞ =8.926, ωp =1.7601× 1016 rad/s, and =3.0841× 1014 rad/s.
-
-
-
-
21
-
-
28044459877
-
-
0021-9991 10.1006/jcph.1994.1159.
-
J. -P. Berenger, J. Comput. Phys. 0021-9991 10.1006/jcph.1994.1159 114, 185 (1994).
-
(1994)
J. Comput. Phys.
, vol.114
, pp. 185
-
-
Berenger, J.-P.1
-
24
-
-
0942277688
-
-
0021-9606 10.1063/1.1629280.
-
E. Hao and G. C. Schatz, J. Chem. Phys. 0021-9606 10.1063/1.1629280 120, 357 (2004).
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 357
-
-
Hao, E.1
Schatz, G.C.2
-
25
-
-
33748274691
-
-
0003-6951 10.1063/1.2339286.
-
E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett. 0003-6951 10.1063/1.2339286 89, 093120 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 093120
-
-
Cubukcu, E.1
Kort, E.A.2
Crozier, K.B.3
Capasso, F.4
-
26
-
-
49749096620
-
-
This movie shows scattering of EM plane wave by the optimally designed asymmetric lens (see Fig. and discussion in the text). EM plane wave propagates from the left to the right and is polarized along the vertical axis. Each frame of the animation presents normalized EM energy in logarithmic scale as a function of spatial coordinates.
-
http://www.theory.northwestern.edu/seideman/asymmetric_lens.mpeg. This movie shows scattering of EM plane wave by the optimally designed asymmetric lens (see Fig. and discussion in the text). EM plane wave propagates from the left to the right and is polarized along the vertical axis. Each frame of the animation presents normalized EM energy in logarithmic scale as a function of spatial coordinates.
-
-
-
-
28
-
-
34547503467
-
-
1932-7447 10.1021/jp0721853.
-
J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, J. Phys. Chem. C 1932-7447 10.1021/jp0721853 111, 10368 (2007).
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 10368
-
-
Sung, J.1
Hicks, E.M.2
Van Duyne, R.P.3
Spears, K.G.4
|