메뉴 건너뛰기




Volumn , Issue , 2007, Pages 361-370

A generalization of proximity functions for K-means

Author keywords

[No Author keywords available]

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; CHLORINE COMPOUNDS; DATA MINING; DECISION SUPPORT SYSTEMS; FLOW OF SOLIDS; INFORMATION MANAGEMENT; MINING; SEARCH ENGINES; TEACHING;

EID: 49749114842     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2007.59     Document Type: Conference Paper
Times cited : (28)

References (26)
  • 1
    • 49749148221 scopus 로고    scopus 로고
    • K-means clustering in statistics toolbox of matlab 7.1
    • K-means clustering in statistics toolbox of matlab 7.1.
  • 2
    • 49749149326 scopus 로고    scopus 로고
    • Libsvm. In www.csie.ntu.edu.tw/ cjlin/libsvm/.
    • Libsvm. In www.csie.ntu.edu.tw/ cjlin/libsvm/.
  • 3
    • 26244461684 scopus 로고    scopus 로고
    • Cluster-ingwith bregman divergences
    • A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Cluster-ingwith bregman divergences. JMLR, 6:1705-1749, 2005.
    • (2005) JMLR , vol.6 , pp. 1705-1749
    • Banerjee, A.1    Merugu, S.2    Dhillon, I.3    Ghosh, J.4
  • 6
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • L. Bregman. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7:200-217, 1967.
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.1
  • 8
    • 0003424372 scopus 로고    scopus 로고
    • Society for Industrial & Applied Mathematics, September
    • J. Demmel. Applied Numerical Linear Algebra. Society for Industrial & Applied Mathematics, September, 1997.
    • (1997) Applied Numerical Linear Algebra
    • Demmel, J.1
  • 9
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • I. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering algorithm for text classification. JMLR, 3(4):1265-1278, 2003.
    • (2003) JMLR , vol.3 , Issue.4 , pp. 1265-1278
    • Dhillon, I.1    Mallela, S.2    Kumar, R.3
  • 11
    • 85030313899 scopus 로고
    • Ohsumed: An interactive retrieval evaluation and new large test collection for research
    • W. Hersh, C. Buckley, T. J. Leone, and D. Hickam. Ohsumed: An interactive retrieval evaluation and new large test collection for research. In SIGIR-94, 1994.
    • (1994) SIGIR-94
    • Hersh, W.1    Buckley, C.2    Leone, T.J.3    Hickam, D.4
  • 12
    • 0015680655 scopus 로고
    • Clusering using a similarity measure based on shared nearest neighbors
    • R. Jarvis and E. Patrick. Clusering using a similarity measure based on shared nearest neighbors. TC, C-22(11):1025-1034, 1973.
    • (1973) TC , vol.C-22 , Issue.11 , pp. 1025-1034
    • Jarvis, R.1    Patrick, E.2
  • 14
    • 49749105019 scopus 로고    scopus 로고
    • G. Karypis. In http://www-users.cs.umn.edu/ karypis/cluto/.
    • G. Karypis. In http://www-users.cs.umn.edu/ karypis/cluto/.
  • 16
    • 49749096215 scopus 로고    scopus 로고
    • J. Li and H. Liu. In http://sdmc.i2r.a-star.edu.sg/rp/.
    • J. Li and H. Liu. In http://sdmc.i2r.a-star.edu.sg/rp/.
  • 18
    • 49749088139 scopus 로고    scopus 로고
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. L. Cam and J. Ney-man, editors, Proc. of the 5th BSMSP, I, Statistics. University of California Press, September 1967.
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. L. Cam and J. Ney-man, editors, Proc. of the 5th BSMSP, Volume I, Statistics. University of California Press, September 1967.
  • 19
    • 10044298988 scopus 로고    scopus 로고
    • Comparing clusterings by the variation of information
    • M. Meila. Comparing clusterings by the variation of information. In Proc. of the 16th COLT, 2003.
    • (2003) Proc. of the 16th COLT
    • Meila, M.1
  • 20
    • 31844440880 scopus 로고    scopus 로고
    • Comparing clusterings- an axiomatic view
    • M. Meila. Comparing clusterings- an axiomatic view. In Proc. of the 22th ICML, 2005.
    • (2005) Proc. of the 22th ICML
    • Meila, M.1
  • 21
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • M. F. Porter. An algorithm for suffix stripping. In Program, 14(3), 1980.
    • (1980) Program , vol.14 , Issue.3
    • Porter, M.F.1
  • 25
    • 33749563831 scopus 로고    scopus 로고
    • K-means clustering versus validation measures: A data distribution perspective
    • August
    • H. Xiong, J. Wu, and J. Chen. K-means clustering versus validation measures: A data distribution perspective. In Proc. of the 12th ACM SIGKDD, August 2006.
    • (2006) Proc. of the 12th ACM SIGKDD
    • Xiong, H.1    Wu, J.2    Chen, J.3
  • 26
    • 3543085722 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • June
    • Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments and analysis. Machine Learning, 55(3):311-331, June 2004.
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.